Submit a preprint

Latest recommendations

IdTitle * Authors * Abstract * Picture * Thematic fields * RecommenderReviewers▲Submission date
30 Nov 2022
article picture

Chemical effects on ecological interactions within a model-experiment loop

A model-experiment loop to optimise data requirements for ecotoxicological risk assessment with mesocosms

Recommended by based on reviews by Charles Hazlerigg and Peter Vermeiren

In Ecotoxicology, the toxicity of chemicals is usually quantified for individuals under laboratory conditions, while in reality individuals interact with other individuals in populations and communities, and are exposed to conditions that vary in space and time. Micro- and mesocosm experiments are therefore used to increase the ecological realism of toxicological risk assessments. Such experiments are, however, labour-intensive, costly, and cannot, due to logistical reasons, implement all possible factors or interests (Henry et al. 2017). Moreover, as such experiments often include animals, the number of experiments performed has to be minimized to reduce animal testing as much as possible.

Modelling has therefore been suggested to complement such experiments (Beaudoin et al. 2012). Still, the population models of the species involved need to be parameterized and can thus require a large amount of data. However, how much data are actually needed is usually unclear. Lamonica et al. (2022) therefore focus on the challenge of “taking the most of experimental data and reducing the amount of experiments to perform”. 

Their ultimate goal is to reduce the number of experiments to parameterize their model of a 3-species mesocosm, comprised of algae, duckweed, and water fleas, sufficiently well. For this, experiments with one, two or three species, with different cadmium concentrations and without cadmium, are performed and used to parameterize, using the Bayesian Monte Carlo Markov Chain (MCMC) method, the model. Then, different data sets omitting certain experiments are used for the same parameterization procedure to see which data sets, and hence experiments, might possibly be omitted when it comes to parameterizing a model that would be precise enough to predict the effects of a toxicant.

The authors clearly demonstrate the added value of the approach, but also discuss limits to the transferability of their recommendations. Their manuscript presents a useful and inspiring illustration of how in the future models and experiments should be combined in an integrated, iterative process. This is in line with the current “Destination Earth” initiative of the European Commission, which aims at producing “digital twins” of different environmental sectors, where the continuous mutual updating of models and monitoring designs is the key idea. 

The authors make an important point when concluding that “data quality and design are more beneficial for modelling purpose than quantity. Ideally, as the use of models and big data in ecology increases […], modellers and experimenters could collaboratively and profitably elaborate model-guided experiments.”

References

Beaudouin R, Ginot V, Monod G (2012) Improving mesocosm data analysis through individual-based modelling of control population dynamics: a case study with mosquitofish (Gambusia holbrooki). Ecotoxicology, 21, 155–164. https://doi.org/10.1007/s10646-011-0775-1

Henry M, Becher MA, Osborne JL, Kennedy PJ, Aupinel P, Bretagnolle V, Brun F, Grimm V, Horn J, Requier F (2017) Predictive systems models can help elucidate bee declines driven by multiple combined stressors. Apidologie, 48, 328–339. https://doi.org/10.1007/s13592-016-0476-0

Lamonica D, Charles S, Clément B, Lopes C (2022) Chemical effects on ecological interactions within a model-experiment loop. bioRxiv, 2022.05.24.493191, ver. 6 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://doi.org/10.1101/2022.05.24.493191

Chemical effects on ecological interactions within a model-experiment loopDominique LAMONICA, Sandrine CHARLES, Bernard CLÉMENT, Christelle LOPES<p style="text-align: justify;">We propose in this paper a method to assess the effects of a contaminant on a micro-ecosystem, integrating the population dynamics and the interactions between species. For that, we developed a dynamic model to desc...Aquatic ecotoxicology, Environmental risk assessment, Modelling, Species interactions-websVolker Grimm Charles Hazlerigg, Peter Vermeiren2022-05-30 11:05:59 View
24 Mar 2023
article picture

Identifying pesticide mixtures at country-wide scale

An original approach for the identification of relevant pesticides mixtures at nationwide scale 

Recommended by based on reviews by Patrice Couture and Clémentine FRITSCH

Over the last decades, pesticides have been massively used in agriculture and their impacts on both the environment and human health are a major growing concern (Humann-Guilleminot et al., 2019; 2019 Boedeker et al., 2020). Improving the prediction of wildlife exposure to pesticides and the associated impacts on ecosystems is therefore crucial. In general, ecotoxicological studies addressing the effects of pesticides include compounds that are selected based on general use over large areas (e.g. regions, country) or specific crop types. Such a selection does not necessarily reflect the mixtures to which species of wildlife are exposed in a particular ecosystem.

In this context, Cairo et al. (2023) present an original approach to identify relevant mixtures of current-use pesticides. Their approach relies on public data concerning pesticide sales and cropping, available at a nationwide scale in France and at a relatively high resolution (i.e. postcode of the buyer). Based on a number of clearly exposed and discussed assumptions (e.g. “pesticides were used in the year of purchase and in the postcode of purchase”), their approach allowed for identifying 18 groups that were discriminated by a reduced number of pesticides. Some compounds were found in most or all groups and were termed “core substances” (e.g. deltamethrin and lambda-cyhalothrin). Other compounds, however, were associated with a limited number of groups and termed “discriminant substances” (e.g. boscalid and epoxiconazole).

The authors identified groups of molecules that are probably associated with the same mixtures, which warrants the investigation of potential synergetic effects. In addition, their approach allowed for the identification of areas where aquatic biota may be exposed to similar mixtures, which is might prove of interest to further investigate in situ the actual impacts of pesticide mixtures on ecosystems. Note that the approach taken by the authors might be applied by others in other countries, provided a database of pesticide sales is available.

REFERENCES

Boedeker W, Watts M, Clausing P, Marquez E (2020) The global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review. BMC Public Health, 20, 1875. https://doi.org/10.1186/s12889-020-09939-0

Cairo M, Monnet A-C, Robin S, Porcher E, Fontaine C (2023) Identifying pesticide mixtures at country-wide scale. HAL, ver. 2 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://hal.science/hal-03815557

Humann-Guilleminot S, Tassin de Montaigu C, Sire J, Grünig S, Gning O, Glauser G, Vallat A, Helfenstein F (2019) A sublethal dose of the neonicotinoid insecticide acetamiprid reduces sperm density in a songbird. Environmental Research, 177, 108589. https://doi.org/10.1016/j.envres.2019.108589

Identifying pesticide mixtures at country-wide scaleMilena Cairo, Anne-Christine Monnet, Stéphane Robin, Emmanuelle Porcher, Colin Fontaine<p style="text-align: justify;">Wild organisms are likely exposed to complex mixtures of pesticides owing to the large diversity of substances on the market and the broad range agricultural practices. The consequences of such exposure are still po...Environmental pollution, Environmental risk assessment, Method standardization, OtherPierre Labadie Clémentine FRITSCH, Patrice Couture2022-10-14 17:13:06 View
25 Sep 2023
article picture

Characterization of the bioaccumulation and toxicity of copper pyrithione, an antifouling compound, on juveniles of rainbow trout

Bioaccumulation and impact of copper pyrithione impact in juveniles of rainbow trout

Recommended by ORCID_LOGO based on reviews by Anne-Sophie Voisin and 1 anonymous reviewer

Our ability to anticipate and estimate how pollution affects biota is intrumental in the field of ecotoxicology. Impact of chemical pollution by metals, drugs or pesticides was widely studied in different species using acute and chronic scenarios. Since the ban on tributyltin in antifouling paints, other copper (Cu)-based paints are on the market, including a new generation of booster biocides:metal pyrithiones such as Cu pyrithione (CuPT). Pyrithione acts as a Cu ionophore facilitating Cu transport across the membranes. Although some data show their occurrence in aquatic ecosystems and few studies on the toxicity of CuPT in fish are published, major gaps in knowledge remain about their toxicity and toxic pathway. Few studies were previously conducted in animals exposed to CuPT pointing to reprotoxicity, developmental malformation and mortality (Li et al. 2021, Mochida et al., 2011; Mohamat-Yusuff et al., 2018, Shin et al., 2022). However, its toxicokinetic and toxicodynamic remain to be characterized in details. 

In this context, Bourdon et al. (2023) compared in juveniles of rainbow trout (Oncorhynchus mykiss), the effects of exposure to CuPT and ionic Cu2+ at equivalent Cu2+ molar concentrations. Presented data allow to compare the toxicity threshold, the accumulation of Cu and mechanisms of toxicity of both compounds. Acute and chronic exposures showed a higher bioaccumulation of Cu in the gills, and a higher toxicity of CuPT than that of ionic Cu2+, e.g. mortality , transcription levels of genes related to oxidative stress, detoxification and Cu transport. Intriguingly, the activities of enzymatic biomarkers used as proxy of antioxidant capacity were not significantly altered, although Cu is generally expected to trigger oxidative stress. In conlusion, this study brings new knowledge pointing that the presence of CuPT in the environment could induce toxic effects in non-target species. Moreover, it support the need to study in detail the toxicity of Cu-based paints to adapt regulations concerning their use and release in aquatic environments. Because of its low solubility in water, CuPT is expected to adsorb to suspended matter and food pellets. Future research should study this route of exposure.

 

 

References

Bourdon, C., Cachot, J., Gonzalez, P., Couture, P., 2023. Characterization of the bioaccumulation and toxicity of copper pyrithione, an antifouling compound, on juveniles of rainbow trout,  bioRxiv  ver. 3 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://doi.org/10.1101/2023.01.31.526498

Li, X., S. Ru, H. Tian, S. Zhang, Z. Lin, M. Gao and J. Wang, 2021. Combined exposure to environmentally relevant copper and 2,2′-dithiobis-pyridine induces significant reproductive toxicity in male guppy (Poecilia reticulata). Science of the Total Environment 797, https://doi.org/10.1016/j.scitotenv.2021.149131

Mochida, K., Amano, H., Onduka, T., Kakuno, A., Fujii, K., 2011. Toxicity and metabolism of copper pyrithione and its degradation product, 2,2’-dipyridyldisulfide in a marine polychaete. Chemosphere 82, 390–397, https://doi.org/10.1016/j.chemosphere.2010.09.074

Mohamat-Yusuff, F., Sarah-Nabila, Ab.G., Zulkifli, S.Z., Azmai, M.N.A., Ibrahim, W.N.W., Yusof, S., Ismail, A., 2018. Acute toxicity test of copper pyrithione on Javanese medaka and the behavioural stress symptoms. Marine Pollution Bulletin 127, 150–153, https://doi.org/10.1016/j.marpolbul.2017.11.046

Shin, D., Y. Choi, Z. Y. Soon, M. Kim, D. J. Kim and J. H. Jung, 2022. Comparative toxicity study of waterborne two booster biocides (CuPT and ZnPT) on embryonic flounder (Paralichthys olivaceus). Ecotoxicology and Environmental Safety 233, https://doi.org/10.1016/j.ecoenv.2022.113337

Characterization of the bioaccumulation and toxicity of copper pyrithione, an antifouling compound, on juveniles of rainbow troutCharlotte Bourdon, Jérôme Cachot, Patrice Gonzalez, Patrice Couture<p>Since the global ban on tributyltin in antifouling paints in 2008 by the International Maritime Organization, new products have been developed and brought to the market. Among them, copper pyrithione (CuPT) is used, but its mechanisms of toxici...Aquatic ecotoxicology, Bioassays, Biomarkers, Biomonitoring, Biotransformation, Environmental pollutionClaudia Cosio Elise David, Anne-Sophie Voisin2023-02-01 15:23:44 View
02 May 2024
article picture

Maternal body condition affects the response of larval spined toads' faecal microbiome to a widespread contaminant

Effects of AMPA on Bufo spinosus microbiota

Recommended by based on reviews by Fabrice Martin-Laurent, Lauris Evariste and 1 anonymous reviewer

The overall pollution of air, water, and soil is currently recognized as one of the five main drivers of biodiversity loss (IPBES 2019). Among chemicals, pesticides play a significant role in this global crisis, as recently re-assessed at the scale of France (Pesce et al. 2023). In this context, although parent molecules are subject to national and international regulations, based on a priori ecological risk assessment (e.g., REACH) as well as monitoring in some environments (see e.g., pesticides classified in the priority list of substances by the Water Frame Directive), pesticide metabolites are rarely considered. In the case of the widely used herbicide glyphosate, a particular concern is rising about its primary metabolite, aminomethylphosphonic acid (AMPA), due to its persistence and overlooked toxicity. 

Amphibians are the most threatened class of vertebrates on earth, with two in every five species considered threatened with extinction (IUCN Red List). While this overall decline has multiple causes, the contribution of pesticides is suspected to be significant in some regions.

In this context, Tartu et al. (2024) studied the effects of AMPA on the gut microbiota of the spined toad, Bufo spinosus. This work complements a previous study which showed embryo mortality, oxidative stress, deformities at hatching, and delayed development (Tartu et al. 2022). Using a common garden experiment based on populations from contrasted habitats (agricultural vs woodland, same as in the previous study), the authors captured breeding pairs and collected the eggs laid in the laboratory. These were exposed to 0.4 µg/L AMPA during embryonic and larval development. Individual microbiota was analysed non-invasively, i.e., using the faeces collected in treatment vessels. Bacterial biodiversity was genetically assessed (16S rRNA). The community biomass and taxonomic structure were analysed as a function of chemical treatment, mother and father body condition (fat vs thin), as well as population of origin. 

As a primary effect, AMPA reduced the microbial biomass. Furthermore, a significant interaction was detected between AMPA and mother condition on the community structure and composition. This alteration, observed in « fat » females only, was reflected through a significant decrease in Bacteroidota and a significant increase in Actinobacteriota (the latter being consistent with the ability of some species in this phylum to use AMPA as a source of phosphorus). The higher sensitivity of tadpoles from females in better condition seems counterintuitive, since better body condition is expected to be associated with higher fitness (and possibly higher ability to face chemical stress), the authors discuss this in the light of the literature (which shows that microbiome-fitness relationships are not often evidenced in natural populations), and hypothesize that these females in better conditions host a microbiota that may be more efficient, yet also more sensitive to AMPA. Not ruling out other possible factors ignored in their study, in particular genotypic effects, the authors further discuss the importance of maternally transmitted effects via the microbiota. 

Altogether, the results published by Tartu et al. (2024) provide important new findings on AMPA toxicity to amphibian microbiota, and also confirm the occurrence of vertical transmission of the microbiota from mother to progeny in this vertebrate class.

References 

IPBES (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. E. S. Brondizio, J. Settele, S. Díaz, and H. T. Ngo (editors). IPBES secretariat, Bonn, Germany. 1148 pages. https://doi.org/10.5281/zenodo.3831673

Pesce, S., Mamy, L., Sanchez, W., et al. (2023). Main conclusions and perspectives from the collective scientific assessment of the effects of plant protection products on biodiversity and ecosystem services along the land–sea continuum in France and French overseas territories. Environ Sci Pollut Res . https://doi.org/10.1007/s11356-023-26952-z

Tartu, S., Renoirt, M., Cheron, M., Gisselmann, L.-L., Catoire, S., Brischoux, F. (2022). Did decades of glyphosate use have selected for resistant amphibians in agricultural habitats? Environ. Pollut. 310, 119823. https://doi.org/10.1016/j.envpol.2022.119823

Tartu, S., Pollet, N., Clavereau, I., Gauthier Bouchard, G., Brischoux, F. (2024). Maternal body condition affects the response of larval spined toads’ faecal microbiome to a widespread contaminant. bioRxiv,  ver. 2 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://doi.org/10.1101/2023.12.18.572122

 

Maternal body condition affects the response of larval spined toads' faecal microbiome to a widespread contaminantSabrina Tartu, Nicolas Pollet, Isabelle Clavereau, Gauthier Bouchard, Francois Brischoux<p>Glyphosate’s primary metabolite, aminomethylphosphonic acid (AMPA), is the most detected pollutant in surface waters. Recent studies have raised concerns about its toxicity, yet underlying mechanisms remain poorly understood. A disruption of th...Aquatic ecotoxicology, Environmental pollutionMarie-Agnès Coutellec Lauris Evariste, Fabrice Martin-Laurent2023-12-19 10:32:45 View
22 Jul 2023
article picture

DRomics, a workflow to exploit dose-response omics data in ecotoxicology

New features of DRomics workflow for improved analyze of dose-response omics data in ecotoxicology

Recommended by ORCID_LOGO based on reviews by Jean Armengaud, Beatrice Gagnaire and Rebecca Beauvais

Our ability to anticipate and estimate how pollution affects components of ecosystems is of paramount importance in the field of ecotoxicology. Dose-response modeling is instrumental, as it allows deriving sensitivity thresholds used at the basis of regulatory risk assessment. In recent years, omics have highly influenced how the impacts of stressors are understood by revealing molecular changes at all levels of biota biological organization (Ebner et al., 2021). To allow analysis of omics data obtained using a typical dose-response design, DRomics a freely available tool for dose-response was proposed composed of both an R package and a free web application (Larras et al. 2018). Advances in this field depend both on theoretical concepts, technology and data integration.

In this context, Delignette-Muller et al. (2023) address the question of how to better integrate omics information in dose-response questions. The paper lists previous possibilities of DRomics and presents new features. It is now able to handle all types of continuous omic and continuous non-omic data (e.g. growth data). This new version proposes new visualization tools, functional annotation and improved modeling workflow for a better robustness of analysis of data with few replicates. New features are meant to help for biological interpretation at the metabolic pathway level, to compare different measurements, biological materials or experimental settings.

References

Delignette-Muller, M. L., A. Siberchicot, F. Larras and E. Billoir (2023), DRomics, a workflow to exploit dose-response omics data in ecotoxicology. bioRxiv, 2023.2002.2009.527852, ver. 4 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://doi.org/10.1101/2023.02.09.527852

Ebner JN. (2021) Trends in the Application of "Omics" to Ecotoxicology and Stress Ecology. Genes, 12(10):1481. https://doi.org/10.3390/genes12101481

Larras F, Billoir E, Baillard V, Siberchicot A, Scholz S, Wubet T, Tarkka M, Schmitt-Jansen M and Delignette-Muller ML (2018). DRomics: a turnkey tool to support the use of the dose-response framework for omics data in ecological risk assessment. Environmental science & technology, 52(24):14461.  https://doi.org/10.1021/acs.est.8b04752

DRomics, a workflow to exploit dose-response omics data in ecotoxicology Marie Laure Delignette-Muller, Aurélie Siberchicot, Floriane Larras, Elise Billoir<p style="text-align: justify;">Omics technologies has opened new possibilities to assess environmental risks and to understand the mode(s) of action of pollutants. Coupled to dose-response experimental designs, they allow a non-targeted assessmen...Aquatic ecotoxicology, Environmental risk assessment, Genetics / Genomics, Marine ecotoxicology, Microbial ecotoxicology, Modelling, Terrestrial ecotoxicologyClaudia Cosio Rebecca Beauvais2023-02-17 15:39:03 View