Latest recommendations
Id | Title * | Authors * | Abstract * | Picture * | Thematic fields * | Recommender | Reviewers | Submission date▲ | |
---|---|---|---|---|---|---|---|---|---|
03 Jul 2024
![]() Ecotoxicity of lanthanides to Daphnia magna: insights from elemental behavior and speciation in a standardized test mediumDavide A.L. Vignati, Loïc Martin, Laurence Poirier, Aurore Zalouk-Vergnoux, Chantal Fouque, Clément Bojic, Christophe Hissler, Carole Cossu-Leguille https://hal.univ-lorraine.fr/hal-04302491v3Lanthanide atomic mass and chemical behaviour in solution influence their solubility and ecotoxicity for Daphnia magna: Implications for risk assessment of aquatic organismsRecommended by Patrice CoutureThe demand for lanthanides (LN) has seen a steady increase and is anticipated to continue to grow. Due to their unique properties, they have become essential in key components of new technologies, such as batteries, wind turbines, electronic components and other devices needed to facilitate energy transition away from fossil fuels. These elements are also increasingly used in a range of new technologies, including medical applications and telecommunication. In this context, the concentrations of lanthanides are expected to increase in freshwater environments (Gwenzi et al., 2018). Our limited knowledge about the risk that they pose to organisms limits our ability to develop guidelines for environmental protection. Research on this issue has so far been hindered by the peculiar properties of lanthanides, that tend to form insoluble precipitates when added in standard ecotoxicological test media (Blinova et al., 2018). This and other challenges of studying lanthanide toxicity were addressed in this in-depth study that leaves few stones unturned. The study by Vignati and colleagues (2024) is the first to investigate the acute toxicity of all LN, with the exception of promethium, a radioactive element, on Daphnia magna, a model test species, following the ISO 6341 (2012) norm. The authors designed their study to generate data useable for the development of risk assessment guidelines for the LN series and to generate data-based recommendations for future studies on LN ecotoxicity. They exposed daphnids to nine to ten dilutions of all tested LN in a medium and carried out 48-hour acute immobilization assays. Initial and final pH was measured along with concentrations of LN in the test solutions sampled at various intervals by ICP-MS. This data allowed calculation of LN speciation, performed using VisualMinteq software. Effect concentrations were also calculated using different metrics based on initial (nominal), time-averaged or modelled LN3+ exposure concentrations. In their multi-faceted investigation, the authors reported several observations that clearly contribute to a better understanding of the ecotoxicity of LN to aquatic organisms and provide useful advice for future studies, briefly summarized here. Proper characterization of exposure concentrations is a key in any ecotoxicological study. Their project shows that even for a short, 48 h exposure, LN concentrations decrease due to a combination of precipitation and, possibly, adsorption. The concentration decrease was inversely proportional to the LN atomic mass, which may reduce the analytical requirements for future studies using the same test medium. The addition of LN to the test medium also modified pH and a detailed hypothesis is formulated to explain this phenomenon that has implications for ecotoxicological endpoints. Conclusions on LN ecotoxicity drawn in this study are based on experimental data and on extensive thermodynamic speciation modeling. The values of EC50 presented in the study varied by several order of magnitude depending on the chosen exposure metric, underscoring the urgent need for consensus-building on this issue across the research community. The authors also provide a comparison of their conclusions on EC50 values for daphnids with the limited data available in the literature, further validating their data with cautions carefully laid out about experimental design. The paper concludes with a list of seven caveats that should be considered both for regulators who will want to use the data presented in the paper for environmental LN concentrations regulations and for future studies. These caveats highlight the importance of considering LN speciation and chemical behavior during ecotoxicity assays, their influence on exposure concentrations, and their importance for risk assessment. They also reiterate that since LN concentrations in filtered water collected in the field are not directly comparable to EC50 values derived from laboratory studies using total or free LN3+ concentrations, an effort must be made to harmonize the methods of LN concentration measurements in field and laboratory studies. Overall, this paper may be one of the most rigorous studies in the current literature about LN ecotoxicity in freshwater systems. In its approach, it sets a precedent for future studies aiming at generating EC50 values or other toxicological endpoints of inorganic contaminants. The paper, carefully reviewed by Carrie Rickwood and by an anonymous reviewer, is a major contribution towards our understanding of LN ecotoxicity. Gwenzi, W., Mangori, L., Danha, C., Chaukura, N, Dunjana, N., Sanganyado, E. (2018). Sources, behaviour, and environmental and human health risks of high technology rare earth elements as emerging contaminants. Sci. Total Environ., 636:299-313. https://doi.org/10.1016/j.scitotenv.2018.04.235 ISO. (2012). Water quality — Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) — Acute toxicity test (norm 6341). https://www.iso.org/standard/54614.html Vignati, D.A.L., Martin, L.A., Poirier, L., Zalouk-Vergnoux, A., Fouque, C., Clément, B., Hissler, C., Cossu-Leguille, C. (2024). Ecotoxicity of lanthanides to Daphnia magna: insights from elemental behavior and speciation in a standardized test medium. Ver.3 peer-reviewed and recommended by Peer Community In Ecotoxicology and Environmental Chemistry. https://hal.science/LIEC-UL/hal-04302491v3 | Ecotoxicity of lanthanides to *Daphnia magna*: insights from elemental behavior and speciation in a standardized test medium | Davide A.L. Vignati, Loïc Martin, Laurence Poirier, Aurore Zalouk-Vergnoux, Chantal Fouque, Clément Bojic, Christophe Hissler, Carole Cossu-Leguille | <p>Lanthanides (LNs) are a group of 15 elements with steadily increasing economical importance due to their multiple uses in technologies essential for sustainable ecological, digital and energetic transitions. Although knowledge on LN ecotoxicolo... | ![]() | Aquatic ecotoxicology, Chemical speciation | Patrice Couture | 2023-11-23 15:16:50 | View | |
02 May 2024
![]() Maternal body condition affects the response of larval spined toads' faecal microbiome to a widespread contaminantSabrina Tartu, Nicolas Pollet, Isabelle Clavereau, Gauthier Bouchard, Francois Brischoux https://doi.org/10.1101/2023.12.18.572122Effects of AMPA on Bufo spinosus microbiotaRecommended by Marie-Agnès Coutellec based on reviews by Fabrice Martin-Laurent, Lauris Evariste and 1 anonymous reviewerThe overall pollution of air, water, and soil is currently recognized as one of the five main drivers of biodiversity loss (IPBES 2019). Among chemicals, pesticides play a significant role in this global crisis, as recently re-assessed at the scale of France (Pesce et al. 2023). In this context, although parent molecules are subject to national and international regulations, based on a priori ecological risk assessment (e.g., REACH) as well as monitoring in some environments (see e.g., pesticides classified in the priority list of substances by the Water Frame Directive), pesticide metabolites are rarely considered. In the case of the widely used herbicide glyphosate, a particular concern is rising about its primary metabolite, aminomethylphosphonic acid (AMPA), due to its persistence and overlooked toxicity. Amphibians are the most threatened class of vertebrates on earth, with two in every five species considered threatened with extinction (IUCN Red List). While this overall decline has multiple causes, the contribution of pesticides is suspected to be significant in some regions. In this context, Tartu et al. (2024) studied the effects of AMPA on the gut microbiota of the spined toad, Bufo spinosus. This work complements a previous study which showed embryo mortality, oxidative stress, deformities at hatching, and delayed development (Tartu et al. 2022). Using a common garden experiment based on populations from contrasted habitats (agricultural vs woodland, same as in the previous study), the authors captured breeding pairs and collected the eggs laid in the laboratory. These were exposed to 0.4 µg/L AMPA during embryonic and larval development. Individual microbiota was analysed non-invasively, i.e., using the faeces collected in treatment vessels. Bacterial biodiversity was genetically assessed (16S rRNA). The community biomass and taxonomic structure were analysed as a function of chemical treatment, mother and father body condition (fat vs thin), as well as population of origin. As a primary effect, AMPA reduced the microbial biomass. Furthermore, a significant interaction was detected between AMPA and mother condition on the community structure and composition. This alteration, observed in « fat » females only, was reflected through a significant decrease in Bacteroidota and a significant increase in Actinobacteriota (the latter being consistent with the ability of some species in this phylum to use AMPA as a source of phosphorus). The higher sensitivity of tadpoles from females in better condition seems counterintuitive, since better body condition is expected to be associated with higher fitness (and possibly higher ability to face chemical stress), the authors discuss this in the light of the literature (which shows that microbiome-fitness relationships are not often evidenced in natural populations), and hypothesize that these females in better conditions host a microbiota that may be more efficient, yet also more sensitive to AMPA. Not ruling out other possible factors ignored in their study, in particular genotypic effects, the authors further discuss the importance of maternally transmitted effects via the microbiota. Altogether, the results published by Tartu et al. (2024) provide important new findings on AMPA toxicity to amphibian microbiota, and also confirm the occurrence of vertical transmission of the microbiota from mother to progeny in this vertebrate class. References IPBES (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. E. S. Brondizio, J. Settele, S. Díaz, and H. T. Ngo (editors). IPBES secretariat, Bonn, Germany. 1148 pages. https://doi.org/10.5281/zenodo.3831673 Pesce, S., Mamy, L., Sanchez, W., et al. (2023). Main conclusions and perspectives from the collective scientific assessment of the effects of plant protection products on biodiversity and ecosystem services along the land–sea continuum in France and French overseas territories. Environ Sci Pollut Res . https://doi.org/10.1007/s11356-023-26952-z Tartu, S., Renoirt, M., Cheron, M., Gisselmann, L.-L., Catoire, S., Brischoux, F. (2022). Did decades of glyphosate use have selected for resistant amphibians in agricultural habitats? Environ. Pollut. 310, 119823. https://doi.org/10.1016/j.envpol.2022.119823 Tartu, S., Pollet, N., Clavereau, I., Gauthier Bouchard, G., Brischoux, F. (2024). Maternal body condition affects the response of larval spined toads’ faecal microbiome to a widespread contaminant. bioRxiv, ver. 2 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://doi.org/10.1101/2023.12.18.572122
| Maternal body condition affects the response of larval spined toads' faecal microbiome to a widespread contaminant | Sabrina Tartu, Nicolas Pollet, Isabelle Clavereau, Gauthier Bouchard, Francois Brischoux | <p>Glyphosate’s primary metabolite, aminomethylphosphonic acid (AMPA), is the most detected pollutant in surface waters. Recent studies have raised concerns about its toxicity, yet underlying mechanisms remain poorly understood. A disruption of th... | ![]() | Aquatic ecotoxicology, Environmental pollution | Marie-Agnès Coutellec | Lauris Evariste, Fabrice Martin-Laurent | 2023-12-19 10:32:45 | View |
17 Mar 2025
Evaluating the Effects of Environmental Disturbances and Pesticide Mixtures on N-cycle related Soil Microbial EndpointsCamilla Drocco, Anja Coors, Marion Devers-Lamrani, Fabrice Martin-Laurent, Nadine Rouard, Aymé Spor https://doi.org/10.1101/2024.01.22.576671Impact of environmental disturbances and pesticides on soil microbial communities involved in the Nitrogen cyclingRecommended by Abdulsamie HananoSoil microbial communities play a crucial role in maintaining ecosystem health, driving key processes such as nutrient cycling, organic matter decomposition, and soil fertility. However, these microbial populations are highly sensitive to environmental changes and chemical stressors, including pesticides. The preprint "Evaluating the effects of environmental disturbances and pesticide mixtures on soil microbial endpoints," provides valuable insights into how soil microbial communities respond to environmental fluctuations and pesticide exposure (Drocco et al., 2025). By integrating experimental soil microcosms with targeted microbial assessments, the study offers a comprehensive view of the resilience and vulnerability of soil microbiota under multiple stress conditions. The study aimed to assess how temperature and humidity fluctuations, along with pesticide exposure, impact soil microbial communities. A total of 250 soil microcosms were subjected to three different environmental conditions: heat disturbance, high humidity simulating heavy rain, or a control with no disturbance. Following a three-day recovery period, the microcosms were exposed to different pesticide active ingredients—clopyralid (herbicide), cypermethrin (insecticide), and pyraclostrobin (fungicide)—either individually or in combination at standard (1x) and elevated (10x) agronomic doses. By evaluating microbial endpoints related to diversity and community structure, the researchers were able to determine how environmental disturbances and chemical exposure influence soil microbial functions (Bacmaga et al., 2015). Of particular interest was the focus on microbial guilds involved in nitrification, a critical process for soil nitrogen cycling and agricultural productivity (Dominati et al., 2010). The study’s findings reveal a complex interplay between environmental stressors and pesticide exposure on microbial communities. Some key observations showed that heat and high humidity significantly altered microbial diversity and composition before pesticide application. This suggests that climate-driven disturbances can precondition microbial communities, potentially influencing their subsequent responses to chemical exposure. Moreover, the pesticide effects depend on dose and combination, while individual pesticides had measurable impacts on microbial endpoints, their effects were amplified when applied in mixtures or at elevated doses. This underscores the importance of considering real-world pesticide applications, where mixtures are commonly used. Furthermore, the results indicate that the microbial guilds involved in nitrification appeared to be disproportionately affected by pesticide exposure, raising concerns about long-term soil fertility and nitrogen availability in treated soils. These findings have significant implications for sustainable agriculture and soil health management. Understanding how soil microbiota respond to environmental and chemical stressors can inform strategies to mitigate negative impacts, such as adopting precision agriculture techniques, improving pesticide formulations, and implementing soil conservation practices. Despite its valuable contributions, the study has some limitations. The controlled microcosm approach, while useful for isolating specific variables, may not fully capture the complexity of field conditions. Long-term effects of pesticide exposure were also not assessed, leaving questions about microbial recovery and ecosystem stability over extended periods. Future research should focus on field-based experiments and long-term monitoring to validate and expand on these findings. In conclusion, the current study highlights the intricate interactions between environmental stressors and pesticide exposure on soil microbial communities. By leveraging a robust experimental design and providing open-access data and statistical scripts, the research enhances our understanding of soil microbial dynamics and their implications for agricultural sustainability. As climate change and intensive pesticide use continue to shape soil ecosystems, such studies are essential for developing resilient and sustainable soil management practices. References Bacmaga, M., et al., 2015. Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium. Environ Sci Pollut Res Int. 22: 643-56, https://doi.org/10.1007/s11356-014-3395-5 Dominati, E., et al., 2010. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics. 69: 1858-1868, https://doi.org/10.1016/j.ecolecon.2010.05.002 Drocco, C., Coors, A., Devers-Lamrani, M., Martin-Laurent, F., Rouard, N., Spor A. 2025. Evaluating the Effects of Environmental Disturbances and Pesticide Mixtures on N-cycle related Soil Microbial Endpoints. ver.3 peer-reviewed and recommended by PCI Ecotoxicology and Environmental Chemistry, https://doi.org/10.1101/2024.01.22.576671 | Evaluating the Effects of Environmental Disturbances and Pesticide Mixtures on N-cycle related Soil Microbial Endpoints | Camilla Drocco, Anja Coors, Marion Devers-Lamrani, Fabrice Martin-Laurent, Nadine Rouard, Aymé Spor | <p>Pesticides are widely used in conventional agriculture, either applied separately or in combination during the culture cycle. Due to their occurrence and persistence in soils, pesticide residues may have an impact on soil microbial communities ... | Environmental risk assessment, Microbial ecotoxicology, Terrestrial ecotoxicology | Abdulsamie Hanano | 2024-01-25 07:52:47 | View | ||
29 Jul 2024
![]() Molecular response to multiple trace element contamination of the European sardineAnaïs Beauvieux, Jean-Marc Fromentin, Claire Saraux, Diego Romero, Nathan Couffin, Adrien Brown, Luisa Metral, Fabrice Bertile, Quentin Schull https://doi.org/10.1101/2024.02.16.580673Molecular-level responses highlight physiological stress in muscle and liver tissue of apparently healthy European sardine specimenRecommended by Davide Anselmo Luigi VignatiFish is an essential component of healthy human diets and the preservation of fish stocks and other marine resources is included as a target of Sustainable Development Goal 14 ‘Conserve and sustainably use the Oceans, Sea and Marine Resources for Sustainable Development’ (UNEP). However, several fish stocks remain in sub-optimal (or worse) conditions due to overfishing and a range of stressors including chemical pollution. Chemical pollution can result in high level of chemicals in fish making it unsuitable for human consumption. Furthermore, the occurrence of chemical-related physiological stress in otherwise apparently healthy fish requires additional research efforts. In natural environments, further complexity arises from fish being simultaneously exposed to multiple contaminants/stressors as opposed to laboratory investigation usually dealing with one or very few contaminants/stressors at a time (Schäfer et al., 2023). Beauvieux et al. (2024) examined the possible role of accumulation of multiple elements on the physiological status of first-year-of-life specimen of European sardine collected in the Gulf of Lions (northeastern Mediterranean Sea) as a contributing factor to the declining sardine population observed in the region since 2008. The ultimate objective of the paper was to identify potential biomarkers of stress in fish otherwise not exhibiting any anomalies in body condition, in agreement with the principles of chemical stress ecology put forward by van der Brink (2008). Out of a total of 105 specimen, individuals were selected according to the lowest (n = 14) or highest (n = 15) levels of contamination and subject to proteomic analysis of liver and red muscle tissues. A first Principal component analysis on all specimen highlighted the possible influence of the Rhone river as a source of geogenic and anthropogenic elements to the Gulf of Lions. A second PCA performed only on specimen selected from proteomics analysis allowed to identify three elemental mixtures possibly responsible for the observed physiological effects. Proteomic analysis in liver and muscle tissue identified both similarities and differences in the pathways involved in response to stress. More in detail, the expression patterns of Myosin and Myomesin were downregulated in red muscle for highly exposed specimen, which suggests possible effects of elemental accumulation on the locomotion abilities of Mediterranean sardines. Pathways involved in lipid metabolism and immune processes were up-regulated in liver, pointing to increased energetic costs for maintaining the overall fish homeostasis in presence of metal contamination. It is interesting to note that these effects were observed at concentrations below the legal thresholds for human consumption (except for As), albeit such thresholds are available only for a limited number of elements (Cd, Pb, Cd, As and inorganic Sn) (EU, 2023). Although stressors other than trace elements could contribute to the observed molecular responses, as acknowledged by the authors themselves, Beauvieux et al. (2024) show that biological responses at lower levels of biological organization can provide both early-warning indications of potential adverse effects in the long term and better understanding of drivers of population decline. By advancing our knowledge of the physiological responses to trace elements and identifying potential biomarkers, this study lays the groundwork for more effective monitoring and conservation strategies. Further studies addressing the combined effects of multiple environmental stressors remain essential to develop holistic approaches to marine ecosystem management and species conservation. References Beauvieux A., Fromentin J.-M., Saraux C., Romero D., Couffin N., Brown A., Metral L., Bertile F., Schull Q. (2024). Molecular response to multiple trace element contamination of the European sardine. bioRxiv, ver. 4 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://doi.org/10.1101/2024.02.16.580673 EU (2023). Commission Regulation (EU) 2023/915. https://eur-lex.europa.eu/eli/reg/2023/915/oj/eng Schäfer R. B., Jackson M., Juvigny-Khenafou N., Osakpolor S. E., Posthuma L., Schneeweiss A., Spaak J., & Vinebrooke R. (2023). Chemical Mixtures and Multiple Stressors: Same but Different? Environmental Toxicology and Chemistry, 42(9), 1915-1936, https://doi.org/10.1002/etc.5629 UNEP: https://sdgs.un.org/goals Van den Brink P. J. (2008). Ecological Risk Assessment: From Book-Keeping to Chemical Stress Ecology. Environmental Science & Technology, 42(24), 8999-9004. https://doi.org/10.1021/es801991c | Molecular response to multiple trace element contamination of the European sardine | Anaïs Beauvieux, Jean-Marc Fromentin, Claire Saraux, Diego Romero, Nathan Couffin, Adrien Brown, Luisa Metral, Fabrice Bertile, Quentin Schull | <p>In marine ecosystems, the presence of trace elements resulting from anthropogenic activities has raised concerns regarding their potential effects on marine organisms. This study delves into the intricate relationship between trace element cont... | ![]() | Biomarkers, Environmental pollution, Marine ecotoxicology | Davide Anselmo Luigi Vignati | 2024-02-22 16:24:52 | View | |
17 Dec 2024
![]() Exposure of wild mammals to glyphosate, AMPA, and glufosinate: a case for “emerging organic contaminants”?Clémentine Fritsch https://hal.science/hal-04485797The widespread detection of glyphosate, AMPA, and glufosinate in rodents and shrews from French agricultural landscapes underscores significant concerns about their potential toxicological impacts in non-target organismsRecommended by Pierre Labadie based on reviews by Sabrina Tartu and 3 anonymous reviewersPesticides give rise to considerable concern due to their impact on biodiversity. Amongst the vast range of compounds used as herbicides, glyphosate (GLY) is the most widely applied one at global scale and its transformation product, aminomethylphosphonic acid (AMPA) is also ubiquitous. However, the toxicity of these chemicals on non-target organisms, including mammals, is somewhat overlooked (Kissane et al., 2017). Beside these two chemicals, Fritsch et al. (2024) also considered another organophosphorus herbicide, i.e. glufosinate (GLUF). Their study examined exposure levels in rodents and shrews living in contrasted cropped and semi-natural habitats in France – i.e., conventional farmland, organic fields, and hedgerows – through the analysis of herbicide residues in their hair. The hypothesis that herbicide residues in hair reflect the exposure to multiple pesticides in wildlife is supported by several papers (i.e. Krief et al. 2017; Fritsch et al. 2022). Results obtained by Fritsch et al. (2024) indicated that the target compounds were widespread in the investigated environments, i.e. GLY, AMPA, and GLUF were detected in 64%, 51%, and 44% of samples, respectively. Diet appeared as a major driver of contamination, as herbivorous and omnivorous voles exhibited higher contamination levels than insectivorous or omnivorous species such as shrews and wild mice. In addition, habitat was also a significant factor: GLY concentrations were particularly high in individuals collected from hedgerows, surpassing those found in crop fields. This unexpected result highlights the contamination of areas considered as ecological refuges for the investigated species. Exposure levels did not show clear differences across sites, based on farming practices or pesticide application intensity. In addition, the measured concentrations of GLY (median 2.7 pg/mg), AMPA (median 1.4 pg/mg), and GLUF (median 3.5 pg/mg) frequently reached thresholds associated with toxic effects on small mammals. In worst case scenarios, exceedance percentages attained values as high as 94 %. Altogether, these results definitely raise concerns about the potential impact of GLY, AMPA and GLUF on non-target wildlife species and populations. These findings by Fritsch et al. (2024) therefore emphasize the widespread presence of these chemicals in agricultural landscapes and question the safety of herbicide use, even in habitats meant to protect biodiversity. This study underscores the need for more comprehensive evaluation of the ecological effects of herbicides to guide policy and conservation efforts.
References Kissane Z, Shephard JM (2017) The rise of glyphosate and new opportunities for biosentinel early-1068 warning studies. Conservation Biology 31: 1293–1300; https://doi.org/10.1111/cobi.12955 Krief S, Berny P, Gumisiriza F, Gross R, Demeneix B, Fini JB, et al. (2017) Agricultural expansion as risk to endangered wildlife: Pesticide exposure in wild chimpanzees and baboons displaying facial dysplasia. Science of the Total Environment 598:647–656; 1072; https://doi.org/10.1016/j.scitotenv.2017.04.113 Fritsch C, Appenzeller BM, Burkart L, Coeurdassier M, Scheifler R, Raoul F, et al. (2022) Pervasive exposure 1041 of wild small mammals to legacy and currently used pesticide mixtures in arable landscapes. 1042 Sci Rep 12:15904; https://doi.org/10.1038/s41598-022-19959-y Fritsch C, Appenzeller BM, Bertrand C, Coeurdassier M, Driget V, Hardy EM, Palazzi P, et al. (2024) Exposure of wild mammals to glyphosate, AMPA, and glufosinate: a case for “emerging organic contaminants”?. HAL, ver.3 peer-reviewed and recommended by PCI Ecotoxicology and Environmental Chemistry https://hal.science/hal-04485797 | Exposure of wild mammals to glyphosate, AMPA, and glufosinate: a case for “emerging organic contaminants”? | Clémentine Fritsch | <p>Glyphosate (GLY) is the most widely used herbicide worldwide, and its use continues to increase. Accumulating evidence shows that GLY and its metabolite aminomethylphosphonic acid (AMPA) are more persistent and toxic than expected, but little i... | ![]() | Bioaccumulation/biomagnification, Biomonitoring, Environmental pollution, Environmental risk assessment, Legacy and emerging contaminants | Pierre Labadie | 2024-03-01 15:15:54 | View |
FOLLOW US
MANAGING BOARD
Pierre Labadie (Representative)