Submit a preprint

Latest recommendations

IdTitle * Authors * Abstract * Picture * Thematic fields * RecommenderReviewersSubmission date
17 Dec 2024
article picture

Exposure of wild mammals to glyphosate, AMPA, and glufosinate: a case for “emerging organic contaminants”?

The widespread detection of glyphosate, AMPA, and glufosinate in rodents and shrews from French agricultural landscapes underscores significant concerns about their potential toxicological impacts in non-target organisms

Recommended by based on reviews by Sabrina Tartu and 3 anonymous reviewers

Pesticides give rise to considerable concern due to their impact on biodiversity. Amongst the vast range of compounds used as herbicides, glyphosate (GLY) is the most widely applied one at global scale and its transformation product, aminomethylphosphonic acid (AMPA) is also ubiquitous. However, the toxicity of these chemicals on non-target organisms, including mammals, is somewhat overlooked (Kissane et al., 2017). Beside these two chemicals, Fritsch et al. (2024) also considered another organophosphorus herbicide, i.e. glufosinate (GLUF). Their study examined exposure levels in rodents and shrews living in contrasted cropped and semi-natural habitats in France – i.e., conventional farmland, organic fields, and hedgerows – through the analysis of herbicide residues in their hair. The hypothesis that herbicide residues in hair reflect the exposure to multiple pesticides in wildlife is supported by several papers (i.e. Krief et al. 2017; Fritsch et al. 2022).

Results obtained by Fritsch et al. (2024) indicated that the target compounds were widespread in the investigated environments, i.e. GLY, AMPA, and GLUF were detected in 64%, 51%, and 44% of samples, respectively. Diet appeared as a major driver of contamination, as herbivorous and omnivorous voles exhibited higher contamination levels than insectivorous or omnivorous species such as shrews and wild mice. In addition, habitat was also a significant factor: GLY concentrations were particularly high in individuals collected from hedgerows, surpassing those found in crop fields. This unexpected result highlights the contamination of areas considered as ecological refuges for the investigated species. Exposure levels did not show clear differences across sites, based on farming practices or pesticide application intensity.

In addition, the measured concentrations of GLY (median 2.7 pg/mg), AMPA (median 1.4 pg/mg), and GLUF (median 3.5 pg/mg) frequently reached thresholds associated with toxic effects on small mammals. In worst case scenarios, exceedance percentages attained values as high as 94 %.

Altogether, these results definitely raise concerns about the potential impact of GLY, AMPA and GLUF on non-target wildlife species and populations. These findings by Fritsch et al. (2024) therefore emphasize the widespread presence of these chemicals in agricultural landscapes and question the safety of herbicide use, even in habitats meant to protect biodiversity. This study underscores the need for more comprehensive evaluation of the ecological effects of herbicides to guide policy and conservation efforts.

 

References

Kissane Z, Shephard JM (2017) The rise of glyphosate and new opportunities for biosentinel early-1068 warning studies. Conservation Biology 31: 1293–1300; https://doi.org/10.1111/cobi.12955

Krief S, Berny P, Gumisiriza F, Gross R, Demeneix B, Fini JB, et al. (2017) Agricultural expansion as risk to endangered wildlife: Pesticide exposure in wild chimpanzees and baboons displaying facial dysplasia. Science of the Total Environment 598:647–656; 1072; https://doi.org/10.1016/j.scitotenv.2017.04.113

Fritsch C, Appenzeller BM, Burkart L, Coeurdassier M, Scheifler R, Raoul F, et al. (2022) Pervasive exposure 1041 of wild small mammals to legacy and currently used pesticide mixtures in arable landscapes. 1042 Sci Rep 12:15904; https://doi.org/10.1038/s41598-022-19959-y

Fritsch C, Appenzeller BM, Bertrand C, Coeurdassier M, Driget V, Hardy EM, Palazzi P, et al. (2024) Exposure of wild mammals to glyphosate, AMPA, and glufosinate: a case for “emerging organic contaminants”?. HAL, ver.3 peer-reviewed and recommended by PCI Ecotoxicology and Environmental Chemistry https://hal.science/hal-04485797

Exposure of wild mammals to glyphosate, AMPA, and glufosinate: a case for “emerging organic contaminants”?Clémentine Fritsch<p>Glyphosate (GLY) is the most widely used herbicide worldwide, and its use continues to increase. Accumulating evidence shows that GLY and its metabolite aminomethylphosphonic acid (AMPA) are more persistent and toxic than expected, but little i...Bioaccumulation/biomagnification, Biomonitoring, Environmental pollution, Environmental risk assessment, Legacy and emerging contaminantsPierre Labadie2024-03-01 15:15:54 View
29 Jul 2024
article picture

Molecular response to multiple trace element contamination of the European sardine

Molecular-level responses highlight physiological stress in muscle and liver tissue of apparently healthy European sardine specimen

Recommended by ORCID_LOGO and ORCID_LOGO based on reviews by Sophie Prud'homme, Roberta Bettinetti and 1 anonymous reviewer

Fish is an essential component of healthy human diets and the preservation of fish stocks and other marine resources is included as a target of Sustainable Development Goal 14 ‘Conserve and sustainably use the Oceans, Sea and Marine Resources for Sustainable Development’ (UNEP). However, several fish stocks remain in sub-optimal (or worse) conditions due to overfishing and a range of stressors including chemical pollution. Chemical pollution can result in high level of chemicals in fish making it unsuitable for human consumption. Furthermore, the occurrence of chemical-related physiological stress in otherwise apparently healthy fish requires additional research efforts. In natural environments, further complexity arises from fish being simultaneously exposed to multiple contaminants/stressors as opposed to laboratory investigation usually dealing with one or very few contaminants/stressors at a time (Schäfer et al., 2023).

Beauvieux et al. (2024) examined the possible role of accumulation of multiple elements on the physiological status of first-year-of-life specimen of European sardine collected in the Gulf of Lions (northeastern Mediterranean Sea) as a contributing factor to the declining sardine population observed in the region since 2008. The ultimate objective of the paper was to identify potential biomarkers of stress in fish otherwise not exhibiting any anomalies in body condition, in agreement with the principles of chemical stress ecology put forward by van der Brink (2008). 

Out of a total of 105 specimen, individuals were selected according to the lowest (n = 14) or highest (n = 15) levels of contamination and subject to proteomic analysis of liver and red muscle tissues.  A first Principal component analysis on all specimen highlighted the possible influence of the Rhone river as a source of geogenic and anthropogenic elements to the Gulf of Lions. 

A second PCA performed only on specimen selected from proteomics analysis allowed to identify three elemental mixtures possibly responsible for the observed physiological effects. Proteomic analysis in liver and muscle tissue identified both similarities and differences in the pathways involved in response to stress. More in detail, the expression patterns of Myosin and Myomesin were downregulated in red muscle for highly exposed specimen, which suggests possible effects of elemental accumulation on the locomotion abilities of Mediterranean sardines. Pathways involved in lipid metabolism and immune processes were up-regulated in liver, pointing to increased energetic costs for maintaining the overall fish homeostasis in presence of metal contamination. It is interesting to note that these effects were observed at concentrations below the legal thresholds for human consumption (except for As), albeit such thresholds are available only for a limited number of elements (Cd, Pb, Cd, As and inorganic Sn) (EU, 2023).

Although stressors other than trace elements could contribute to the observed molecular responses, as acknowledged by the authors themselves, Beauvieux et al. (2024) show that biological responses at lower levels of biological organization can provide both early-warning indications of potential adverse effects in the long term and better understanding of drivers of population decline. By advancing our knowledge of the physiological responses to trace elements and identifying potential biomarkers, this study lays the groundwork for more effective monitoring and conservation strategies. Further studies addressing the combined effects of multiple environmental stressors remain essential to develop holistic approaches to marine ecosystem management and species conservation. 

References

Beauvieux A., Fromentin J.-M., Saraux C., Romero D., Couffin N., Brown A., Metral L., Bertile F., Schull Q. (2024). Molecular response to multiple trace element contamination of the European sardine. bioRxiv, ver. 4 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://doi.org/10.1101/2024.02.16.580673  

EU (2023). Commission Regulation (EU) 2023/915. https://eur-lex.europa.eu/eli/reg/2023/915/oj/eng

Schäfer R. B., Jackson M., Juvigny-Khenafou N., Osakpolor S. E., Posthuma L., Schneeweiss A., Spaak J., & Vinebrooke R. (2023). Chemical Mixtures and Multiple Stressors: Same but Different? Environmental Toxicology and Chemistry, 42(9), 1915-1936, https://doi.org/10.1002/etc.5629

UNEP: https://sdgs.un.org/goals

Van den Brink P. J. (2008). Ecological Risk Assessment: From Book-Keeping to Chemical Stress Ecology. Environmental Science & Technology, 42(24), 8999-9004. https://doi.org/10.1021/es801991c 

Molecular response to multiple trace element contamination of the European sardineAnaïs Beauvieux, Jean-Marc Fromentin, Claire Saraux, Diego Romero, Nathan Couffin, Adrien Brown, Luisa Metral, Fabrice Bertile, Quentin Schull<p>In marine ecosystems, the presence of trace elements resulting from anthropogenic activities has raised concerns regarding their potential effects on marine organisms. This study delves into the intricate relationship between trace element cont...Biomarkers, Environmental pollution, Marine ecotoxicologyDavide Anselmo Luigi Vignati2024-02-22 16:24:52 View
04 Mar 2024
article picture

Ivermectin resistance in dung beetles exposed for multiple generations

Low potential of arthropod species to aquire resistance to invermectin drug could induce a risk of extinction in contaminated pastures

Recommended by ORCID_LOGO based on reviews by Marcel Amichot and 2 anonymous reviewers

For many decades, the macrocyclic lactone drug ivermectin is extensively used in veterinary medicine and agriculture, as well as human medicine. Residues of ivermectin excreted in cattle dung remain persistent in soils (Mougin et al., 2003), biologically active and threaten non-target soil and coprophagous organisms such as dung flies and beetles (Lumaret et al., 2012). Ivermectin affects highly beneficial and taxonomically diverse groups inhabiting dung pats, including flies, parasitic wasps, as well as coprophilus and predatory dung beetles (Villar et al., 2022). Ivermectin resistance is well document in insects, but it seems to take longer and to be less effective than resistance to insecticides or other antiparasitic drugs, because of different physiological mechanisms involved in resistance (Seaman et al., 2015).

In that context, Gonzalez-Tokman et al. (2024) compared the reproductive success of a line of dung beetles (Euoniticellus intermedius, Scarabaeinae) exposed to a moderate concentration of invermectin during 18 generations, and a control line of beatles that was maintained free of antiparasitic drug. They carried-out toxicity experiments with increasing ivermectin concentrations to determine if sensitivity to ivermectin was reduced after some generations of exposure, possibly by acquiring resistance by means of transgenerational effects. Thus, dung beetles did not generate resistance to ivermectin after 18 generations of continuous exposure, and quantitative genetic analyses showed only low genetic variation in response to ivermectin.

The results published by Gonzalez-Tokman et al. (2024) indicated a low potential of beetles for adaptation to the drug, and suggest for non-target invertebrate groups a possible risk of extinction in ivermectin-contaminated pastures. These effects can greatly impact grassland ecology, lower their quality and reduce the area available and palatable to livestock.

References

Mougin, C., Kollmann, A., Dubroca, J., Ducrot, P.-H., Alvinerie, M., Galtier, P., 2003. Fate of the veterinary medicine ivermectin in soil. Environ. Chem. Letters 1, 131-134. https://doi.org/10.1007/s10311-003-0032-9

Lumaret, JP., Errouissi, F., Floate, K., Römbke, J., Wardhaugh, K., 2012. A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Current Pharmaceutical Biotechnology 13(6), 1004-60. https://doi.org/10.2174/138920112800399257

Villar, D., & Schaeffer, D.J., 2022. Ivermectin use on pastured livestock in Colombia: parasite resistance and impacts on the dung community. Revista Colombiana De Ciencias Pecuarias, 36(1), 3-12. https://doi.org/10.17533/udea.rccp.v36n1a2

Seaman, J.A., Alout, H., Meyers, J.I., Stenglein, M.D., Dabiré, R.K., Lozano-Fuentes, S., Burton, T.A., 471 Kuklinski, W.S., Black, W.C., Foy, B.D., 2015. Age and prior blood feeding of Anopheles gambiae influences their susceptibility and gene expression patterns to ivermectin-containing blood meals. BMC Genomics 16, 797. https://doi.org/10.1186/s12864-015-2029-8 

González-Tokman, D., Arellano-Torres, A., Baena-Díaz, F., Bustos, C., Martínez M., I., 2024. Ivermectin resistance in dung beetles exposed for multiple generations, bioRxiv ver. 3 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://doi.org/10.1101/2023.05.08.539900

Ivermectin resistance in dung beetles exposed for multiple generationsDaniel Gonzalez Tokman, Antonio Arellano Torres, Fernanda Baena-Diaz, Carlos Bustos, Imelda Martinez M<p>Ivermectin is an antiparasitic drug commonly used in cattle, that is excreted in dung, causing lethal and sub-lethal effects on coprophagous non-target fauna. Given that cattle parasites generate resistance to ivermectin, farmers have increased...Ecosystem Health, Environmental pollution, Global changes, Terrestrial ecotoxicologyChristian Mougin2023-05-12 04:57:32 View
24 Mar 2023
article picture

Identifying pesticide mixtures at country-wide scale

An original approach for the identification of relevant pesticides mixtures at nationwide scale 

Recommended by based on reviews by Patrice Couture and Clémentine FRITSCH

Over the last decades, pesticides have been massively used in agriculture and their impacts on both the environment and human health are a major growing concern (Humann-Guilleminot et al., 2019; 2019 Boedeker et al., 2020). Improving the prediction of wildlife exposure to pesticides and the associated impacts on ecosystems is therefore crucial. In general, ecotoxicological studies addressing the effects of pesticides include compounds that are selected based on general use over large areas (e.g. regions, country) or specific crop types. Such a selection does not necessarily reflect the mixtures to which species of wildlife are exposed in a particular ecosystem.

In this context, Cairo et al. (2023) present an original approach to identify relevant mixtures of current-use pesticides. Their approach relies on public data concerning pesticide sales and cropping, available at a nationwide scale in France and at a relatively high resolution (i.e. postcode of the buyer). Based on a number of clearly exposed and discussed assumptions (e.g. “pesticides were used in the year of purchase and in the postcode of purchase”), their approach allowed for identifying 18 groups that were discriminated by a reduced number of pesticides. Some compounds were found in most or all groups and were termed “core substances” (e.g. deltamethrin and lambda-cyhalothrin). Other compounds, however, were associated with a limited number of groups and termed “discriminant substances” (e.g. boscalid and epoxiconazole).

The authors identified groups of molecules that are probably associated with the same mixtures, which warrants the investigation of potential synergetic effects. In addition, their approach allowed for the identification of areas where aquatic biota may be exposed to similar mixtures, which is might prove of interest to further investigate in situ the actual impacts of pesticide mixtures on ecosystems. Note that the approach taken by the authors might be applied by others in other countries, provided a database of pesticide sales is available.

REFERENCES

Boedeker W, Watts M, Clausing P, Marquez E (2020) The global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review. BMC Public Health, 20, 1875. https://doi.org/10.1186/s12889-020-09939-0

Cairo M, Monnet A-C, Robin S, Porcher E, Fontaine C (2023) Identifying pesticide mixtures at country-wide scale. HAL, ver. 2 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://hal.science/hal-03815557

Humann-Guilleminot S, Tassin de Montaigu C, Sire J, Grünig S, Gning O, Glauser G, Vallat A, Helfenstein F (2019) A sublethal dose of the neonicotinoid insecticide acetamiprid reduces sperm density in a songbird. Environmental Research, 177, 108589. https://doi.org/10.1016/j.envres.2019.108589

Identifying pesticide mixtures at country-wide scaleMilena Cairo, Anne-Christine Monnet, Stéphane Robin, Emmanuelle Porcher, Colin Fontaine<p style="text-align: justify;">Wild organisms are likely exposed to complex mixtures of pesticides owing to the large diversity of substances on the market and the broad range agricultural practices. The consequences of such exposure are still po...Environmental pollution, Environmental risk assessment, Method standardization, OtherPierre Labadie Clémentine FRITSCH, Patrice Couture2022-10-14 17:13:06 View
17 Mar 2025
article picture

Evaluating the Effects of Environmental Disturbances and Pesticide Mixtures on N-cycle related Soil Microbial Endpoints

Impact of environmental disturbances and pesticides on soil microbial communities involved in the Nitrogen cycling

Recommended by ORCID_LOGO and ORCID_LOGO based on reviews by Edoardo Puglisi, Vincent Laderriere and 1 anonymous reviewer

Soil microbial communities play a crucial role in maintaining ecosystem health, driving key processes such as nutrient cycling, organic matter decomposition, and soil fertility. However, these microbial populations are highly sensitive to environmental changes and chemical stressors, including pesticides. The preprint "Evaluating the effects of environmental disturbances and pesticide mixtures on soil microbial endpoints," provides valuable insights into how soil microbial communities respond to environmental fluctuations and pesticide exposure (Drocco et al., 2025). By integrating experimental soil microcosms with targeted microbial assessments, the study offers a comprehensive view of the resilience and vulnerability of soil microbiota under multiple stress conditions.

The study aimed to assess how temperature and humidity fluctuations, along with pesticide exposure, impact soil microbial communities. A total of 250 soil microcosms were subjected to three different environmental conditions: heat disturbance, high humidity simulating heavy rain, or a control with no disturbance. Following a three-day recovery period, the microcosms were exposed to different pesticide active ingredients—clopyralid (herbicide), cypermethrin (insecticide), and pyraclostrobin (fungicide)—either individually or in combination at standard (1x) and elevated (10x) agronomic doses.

By evaluating microbial endpoints related to diversity and community structure, the researchers were able to determine how environmental disturbances and chemical exposure influence soil microbial functions (Bacmaga et al., 2015). Of particular interest was the focus on microbial guilds involved in nitrification, a critical process for soil nitrogen cycling and agricultural productivity (Dominati et al., 2010).

The study’s findings reveal a complex interplay between environmental stressors and pesticide exposure on microbial communities. Some key observations showed that heat and high humidity significantly altered microbial diversity and composition before pesticide application. This suggests that climate-driven disturbances can precondition microbial communities, potentially influencing their subsequent responses to chemical exposure. Moreover, the pesticide effects depend on dose and combination, while individual pesticides had measurable impacts on microbial endpoints, their effects were amplified when applied in mixtures or at elevated doses. This underscores the importance of considering real-world pesticide applications, where mixtures are commonly used. Furthermore, the results indicate that the microbial guilds involved in nitrification appeared to be disproportionately affected by pesticide exposure, raising concerns about long-term soil fertility and nitrogen availability in treated soils.

These findings have significant implications for sustainable agriculture and soil health management. Understanding how soil microbiota respond to environmental and chemical stressors can inform strategies to mitigate negative impacts, such as adopting precision agriculture techniques, improving pesticide formulations, and implementing soil conservation practices.

Despite its valuable contributions, the study has some limitations. The controlled microcosm approach, while useful for isolating specific variables, may not fully capture the complexity of field conditions. Long-term effects of pesticide exposure were also not assessed, leaving questions about microbial recovery and ecosystem stability over extended periods. Future research should focus on field-based experiments and long-term monitoring to validate and expand on these findings.

In conclusion, the current study highlights the intricate interactions between environmental stressors and pesticide exposure on soil microbial communities. By leveraging a robust experimental design and providing open-access data and statistical scripts, the research enhances our understanding of soil microbial dynamics and their implications for agricultural sustainability. As climate change and intensive pesticide use continue to shape soil ecosystems, such studies are essential for developing resilient and sustainable soil management practices.

References

Bacmaga, M., et al., 2015. Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium. Environ Sci Pollut Res Int. 22: 643-56, https://doi.org/10.1007/s11356-014-3395-5 

Dominati, E., et al., 2010. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics. 69: 1858-1868, https://doi.org/10.1016/j.ecolecon.2010.05.002 

Drocco, C., Coors, A., Devers-Lamrani, M., Martin-Laurent, F., Rouard, N., Spor A. 2025. Evaluating the Effects of Environmental Disturbances and Pesticide Mixtures on N-cycle related Soil Microbial Endpoints. ver.3 peer-reviewed and recommended by PCI Ecotoxicology and Environmental Chemistry, https://doi.org/10.1101/2024.01.22.576671

Evaluating the Effects of Environmental Disturbances and Pesticide Mixtures on N-cycle related Soil Microbial EndpointsCamilla Drocco, Anja Coors, Marion Devers-Lamrani, Fabrice Martin-Laurent, Nadine Rouard, Aymé Spor<p>Pesticides are widely used in conventional agriculture, either applied separately or in combination during the culture cycle. Due to their occurrence and persistence in soils, pesticide residues may have an impact on soil microbial communities ...Environmental risk assessment, Microbial ecotoxicology, Terrestrial ecotoxicologyAbdulsamie Hanano2024-01-25 07:52:47 View