Latest recommendations
Id | Title * ▲ | Authors * | Abstract * | Picture * | Thematic fields * | Recommender | Reviewers | Submission date | |
---|---|---|---|---|---|---|---|---|---|
22 Jul 2023
No evidence for an effect of chronic boat noise on the fitness of reared water fleasLoïc Prosnier, Emilie Rojas, Vincent Médoc https://doi.org/10.1101/2022.11.20.517267Noise impact in Daphnia magnaRecommended by Claudia Cosio based on reviews by Marie-Agnès Coutellec and 1 anonymous reviewerOur ability to anticipate and estimate how pollution affects biota is of paramount importance in the field of ecotoxicology. Impact of chemical pollution by metals, drugs or pesticides was widely studied in different species using acute and chronic scenarios. While environmental factors such as temperature are also often considered, noise is largely ignored in these models despite the knowledge of its detrimental effects in vertebrates. Studies of noise impacts included behavior and fitness endpoints and showed no effect to death depending on intensity, frequency and the distance from the noise source (Peng et al., 2015). Nonetheless, the impact of noise in biota is not well-understood, which impairs its effective mitigation. Noise or acoustic pollution due to boat traffic produce low-frequency stationary noise. It is a pervasive and ubiquitous pollutant found in aquatic ecosystems. In this context, Prosnier et al. (2023) addresses how intermittent and random noise impacted Daphnia magna, a representative of zooplankton model, widely used in ecotoxicology. Endpoints of lifespan and clonal offspring production were measured in the presence or absence of motorboat noises, in animals reared from birth to death. Noise consisted in a playlist of 15 sounds of motorboat recorded in the Grangent lake (Loire, France). Their intensity ranged from 0 to -25 dB Re 1 μPa by 5 dB to create 75 sounds from 103 to 150 dB RMS Re 1 μPa – a range of levels occurring in lakes. Treatment had no effect on analyzed endpoints, contrary to a continuous broadband noise (100-20,000 Hz) that caused higher survival and fecundity, and reduced speed of motion compared to control (Prosnier et al., 2022). Data point that temporal (continuous, regular, random) and frequency of noise are instrumental for its effects. References Peng, C., X. Zhao and G. Liu (2015). "Noise in the Sea and Its Impacts on Marine Organisms." Int J Environ Res Public Health 12(10): 12304-12323. https://doi.org/10.3390/ijerph121012304 Prosnier, L., E. Rojas and V. Médoc (2023). "No evidence for an effect of chronic boat noise on the fitness of reared water fleas." bioRxiv: 2022. ver. 4 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://doi.org/10.1101/2022.11.20.517267 Prosnier, L., E. Rojas, O. Valéro and V. Médoc (2022). "Chronic noise unexpectedly increases fitness of a freshwater zooplankton." bioRxiv: 2022. https://doi.org/10.1101/2022.11.19.517212 | No evidence for an effect of chronic boat noise on the fitness of reared water fleas | Loïc Prosnier, Emilie Rojas, Vincent Médoc | <p style="text-align: justify;">Among the numerous questions about human impacts on ecosystems, there is a growing interest for acoustic pollution. First studies on underwater acoustic pollution focused, and showed effects, on vertebrates’ behavio... | Aquatic ecotoxicology, Ecosystem Health, Environmental pollution, Global changes, Life History, Other | Claudia Cosio | 2022-12-08 17:23:07 | View | ||
09 Dec 2022
Soot and charcoal as reservoirs of extracellular DNAStanislav Jelavic, Lisbeth Garbrecht Thygesen, Valerie Magnin, Nathaniel Findling, Sascha Müller, Viktoriia Meklesh, Karina Krarup Sand https://doi.org/10.26434/chemrxiv-2021-9pz8c-v5New insights into eDNA sorption onto environmental carbonaceous materialsRecommended by Pierre Labadie based on reviews by Jérôme Duval and 1 anonymous reviewerIn recent years, the use of environmental DNA (eDNA) to investigate biodiversity has gained considerable interest (Thomsen and Willerslev, 2015; Mauvisseau et al., 2022). It allows for the indirect detection of species but it requires a sound understanding of eDNA behaviour and persistence in the environment. This is, however, a complex task because eDNA may be found in several states (e.g., dissolved, adsorbed, intracellular or intraorganellar), which display specific decay rates controlled by environmental factors (Harrisson et al., 2019; Mauvisseau et al. 2022). In the environment, dissolved DNA may interact with the surfaces of various sorbents, including mineral and organic particles/colloids. Current knowledge on eDNA sorption suggests that eDNA–sorbent interactions are controlled by electrostatics as well as inner-sphere complex formation (Mauvisseau et al., 2022). In this context, the work undertaken by Jelavic et al. (2022), focused on the adsorption of eDNA by lesser-investigated carbonaceous materials (CMs), namely soot and charcoal, as common non-mineral environmental surfaces. The authors aimed to study the adsorption capacity of soot and charcoal surfaces with respect to eDNA, in relation to solution parameters (i.e., pH, ionic strength, concentration/type of cations), time and eDNA length, under both non‐equilibrium and equilibrium conditions. Using such an approach, Jelavic et al. demonstrated the large adsorption capacities of CMs and the strong binding of DNA to these sorbents. The authors did not provide definitive conclusions on the mechanisms of eDNA sorption onto CMs. However, they provided new elements suggesting that, along with electrostatic interactions, hydrophobic interactions might play an important role in the adsorption of eDNA to CMs such as soot and charcoal. Altogether, the results presented in this paper highlight the relevance of CMs as sources of biodiversity information. In addition, it is likely that those results will also prove useful for the community to improve protocols for eDNA extraction from environmental samples that contain high fractions of CMs, e.g. urban soils. References Harrison JB, Sunday JM, Rogers SM (2019) Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society B: Biological Sciences, 286, 20191409. https://doi.org/10.1098/rspb.2019.1409 Jelavic S, Thygesen LG, Magnin V, Findling N, Müller S, Meklesh V, Sand KK (2022) Soot and charcoal as reservoirs of extracellular DNA. ChemRxiv, ver. 5 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://doi.org/10.26434/chemrxiv-2021-9pz8c-v5 Mauvisseau Q, Harper LR, Sander M, Hanner RH, Kleyer H, Deiner K (2022) The Multiple States of Environmental DNA and What Is Known about Their Persistence in Aquatic Environments. Environmental Science & Technology, 56, 5322–5333. https://doi.org/10.1021/acs.est.1c07638 Thomsen PF, Willerslev E (2015) Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183, 4–18. https://doi.org/10.1016/j.biocon.2014.11.019 | Soot and charcoal as reservoirs of extracellular DNA | Stanislav Jelavic, Lisbeth Garbrecht Thygesen, Valerie Magnin, Nathaniel Findling, Sascha Müller, Viktoriia Meklesh, Karina Krarup Sand | <p style="text-align: justify;">The vast potential of using sediment adsorbed DNA as a window to past and present biodiversity rely on the ability of solid surfaces to adsorb environmental DNA. However, a comprehensive insight into DNA adsorption ... | Analytical Chemistry, Environmental chemistry, Environmental monitoring | Pierre Labadie | Anonymous, Jérôme Duval | 2022-04-13 16:08:36 | View |