Latest recommendations
Id | Title * | Authors * | Abstract * | Picture * | Thematic fields * ▼ | Recommender | Reviewers | Submission date | |
---|---|---|---|---|---|---|---|---|---|
21 Jan 2025
![]() Do macroinvertebrate abundance and community structure depend on the quality of ponds located in peri-urban areas?Florence D. Hulot, Christophe Hanot, Sylvie Nélieu, Isabelle Lamy, Sara Karolak, Ghislaine Delarue, Emmanuelle Baudry https://hal.science/hal-04850220v1Integrating chemical and biological assessments to understand the impact of pollutants on freshwater biodiversity in model systems such as peri-urban pondsRecommended by Pierre LabadiePonds, as small freshwater ecosystems, are particularly vulnerable due to their limited size. Yet they are often overlooked in research, possibly because they are considered less important (Biggs et al., 2017). Shallow water bodies support higher biodiversity than larger aquatic ecosystems. Peri-urban areas, characterized by a blend of agricultural and urban land uses, are dynamic and constantly evolving landscapes with diverse activities and stakeholders (Zoomers et al., 2017); as such, they are referred to as "restless landscapes" or zones of continual transformation (Zoomers et al., 2017). They often harbor neglected ecosystems, and despite their ecological importance, ponds and wetlands in peri-urban areas remain relatively underexplored (Wanek et al., 2021). Furthermore, these areas may experience increased contaminant inputs, which are regarded as one of the 12 major threats to freshwater biodiversity (Reid et al., 2019). In this context, Hulot et al. (2025) monitored 12 peri-urban ponds in the Île-de-France region (near Paris, France) to investigate the relationships between land use, pollutant concentrations in water and sediment, and macroinvertebrate distribution. The originality of this work lies in its multidisciplinary and integrated approach, combining ecological and chemical analyses. While assessing agricultural, urban, grassland, and forest landscapes surrounding each pond, this study aimed to understand how contaminants constrain macroinvertebrate communities. The authors hypothesized that i) ponds in grassland and forest environments support higher local diversity than those in agricultural or urban areas, ii) rare and pollution-sensitive species significantly contribute to regional diversity, and iii) contaminants in water and sediment influence the distribution of macroinvertebrate morphotaxa. This study provides numerous novel results. Specifically, it demonstrates that fluctuations in morphotaxa composition are predominantly driven by species replacement rather than by disparities in species richness. This pattern was largely attributed to the high prevalence of pollutant-tolerant species in certain ponds. In addition, community compositions appeared to be influenced by sediment levels of pharmaceuticals, water conductivity, and ammonium concentrations. In summary, ponds located in peri-urban areas are subject to a range of human-induced disturbances, and these results suggest that these disturbances lead to chronic and varied contamination, which in turn affects the composition of morphotaxa communities. These findings establish a clear connection between local pollution and ecological composition, a crucial aspect for effective conservation and restoration efforts on peri-urban ponds.
References
Biggs, J., S. von Fumetti, Kelly-Quinn M. (2017). The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793(1): 3-39 625. https://doi.org/10.1007/s10750-016-3007-0 Hulot, F.D., Hanot, C., Nélieu, S., Lamy, I., Karolak, S., Delarue, G., Baudry E., (2024) Do macroinvertebrate abundance and community structure depend on the quality of ponds located in peri-urban areas? ver.3 peer-reviewed and recommended by PCI Ecotoxicology and Environmental Chemistry. https://hal.science/hal-04850220v1 Reid, A. J., A. K. Carlson, I. F. Creed, E. J. Eliason, P. A. Gell, P. T. J. Johnson, 712 K. A. Kidd, T. J. MacCormack, J. D. Olden, S. J. Ormerod, J. P. Smol, W. W. Taylor, K. Tockner, J. C. Vermaire, D. Dudgeon, Cooke, S. J. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94(3):849-873. https://doi.org/10.1111/brv.12480 Wanek, A., C. L. M. Hargiss, J. Norland, Ellingson, N. 2021. Assessment of water quality in ponds across the rural, peri-urban, and urban gradient. Environmental Monitoring and Assessment 193: 694. https://doi.org/10.1007/s10661-021-09471-7 Zoomers, A., F. van Noorloos, K. Otsuki, G. Steel, van Westen, G. 2017. The Rush for Land in anUrbanizing World: From Land Grabbing Toward Developing Safe, Resilient, and Sustainable Cities and Landscapes. World Dev 92:242-252. https://doi.org/10.1016/j.worlddev.2016.11.016 | Do macroinvertebrate abundance and community structure depend on the quality of ponds located in peri-urban areas? | Florence D. Hulot, Christophe Hanot, Sylvie Nélieu, Isabelle Lamy, Sara Karolak, Ghislaine Delarue, Emmanuelle Baudry | <p style="text-align: justify;">Contamination is one of the major threats to freshwater biodiversity. Compared to other aquatic ecosystems, peri-urban ponds are unique because they are embedded in human-dominated areas. However, it is poorly under... | ![]() | Aquatic ecotoxicology, Ecosystem Health, Environmental pollution | Pierre Labadie | 2023-10-26 16:37:22 | View | |
03 Jul 2024
![]() Ecotoxicity of lanthanides to Daphnia magna: insights from elemental behavior and speciation in a standardized test mediumDavide A.L. Vignati, Loïc Martin, Laurence Poirier, Aurore Zalouk-Vergnoux, Chantal Fouque, Clément Bojic, Christophe Hissler, Carole Cossu-Leguille https://hal.univ-lorraine.fr/hal-04302491v3Lanthanide atomic mass and chemical behaviour in solution influence their solubility and ecotoxicity for Daphnia magna: Implications for risk assessment of aquatic organismsRecommended by Patrice CoutureThe demand for lanthanides (LN) has seen a steady increase and is anticipated to continue to grow. Due to their unique properties, they have become essential in key components of new technologies, such as batteries, wind turbines, electronic components and other devices needed to facilitate energy transition away from fossil fuels. These elements are also increasingly used in a range of new technologies, including medical applications and telecommunication. In this context, the concentrations of lanthanides are expected to increase in freshwater environments (Gwenzi et al., 2018). Our limited knowledge about the risk that they pose to organisms limits our ability to develop guidelines for environmental protection. Research on this issue has so far been hindered by the peculiar properties of lanthanides, that tend to form insoluble precipitates when added in standard ecotoxicological test media (Blinova et al., 2018). This and other challenges of studying lanthanide toxicity were addressed in this in-depth study that leaves few stones unturned. The study by Vignati and colleagues (2024) is the first to investigate the acute toxicity of all LN, with the exception of promethium, a radioactive element, on Daphnia magna, a model test species, following the ISO 6341 (2012) norm. The authors designed their study to generate data useable for the development of risk assessment guidelines for the LN series and to generate data-based recommendations for future studies on LN ecotoxicity. They exposed daphnids to nine to ten dilutions of all tested LN in a medium and carried out 48-hour acute immobilization assays. Initial and final pH was measured along with concentrations of LN in the test solutions sampled at various intervals by ICP-MS. This data allowed calculation of LN speciation, performed using VisualMinteq software. Effect concentrations were also calculated using different metrics based on initial (nominal), time-averaged or modelled LN3+ exposure concentrations. In their multi-faceted investigation, the authors reported several observations that clearly contribute to a better understanding of the ecotoxicity of LN to aquatic organisms and provide useful advice for future studies, briefly summarized here. Proper characterization of exposure concentrations is a key in any ecotoxicological study. Their project shows that even for a short, 48 h exposure, LN concentrations decrease due to a combination of precipitation and, possibly, adsorption. The concentration decrease was inversely proportional to the LN atomic mass, which may reduce the analytical requirements for future studies using the same test medium. The addition of LN to the test medium also modified pH and a detailed hypothesis is formulated to explain this phenomenon that has implications for ecotoxicological endpoints. Conclusions on LN ecotoxicity drawn in this study are based on experimental data and on extensive thermodynamic speciation modeling. The values of EC50 presented in the study varied by several order of magnitude depending on the chosen exposure metric, underscoring the urgent need for consensus-building on this issue across the research community. The authors also provide a comparison of their conclusions on EC50 values for daphnids with the limited data available in the literature, further validating their data with cautions carefully laid out about experimental design. The paper concludes with a list of seven caveats that should be considered both for regulators who will want to use the data presented in the paper for environmental LN concentrations regulations and for future studies. These caveats highlight the importance of considering LN speciation and chemical behavior during ecotoxicity assays, their influence on exposure concentrations, and their importance for risk assessment. They also reiterate that since LN concentrations in filtered water collected in the field are not directly comparable to EC50 values derived from laboratory studies using total or free LN3+ concentrations, an effort must be made to harmonize the methods of LN concentration measurements in field and laboratory studies. Overall, this paper may be one of the most rigorous studies in the current literature about LN ecotoxicity in freshwater systems. In its approach, it sets a precedent for future studies aiming at generating EC50 values or other toxicological endpoints of inorganic contaminants. The paper, carefully reviewed by Carrie Rickwood and by an anonymous reviewer, is a major contribution towards our understanding of LN ecotoxicity. Gwenzi, W., Mangori, L., Danha, C., Chaukura, N, Dunjana, N., Sanganyado, E. (2018). Sources, behaviour, and environmental and human health risks of high technology rare earth elements as emerging contaminants. Sci. Total Environ., 636:299-313. https://doi.org/10.1016/j.scitotenv.2018.04.235 ISO. (2012). Water quality — Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) — Acute toxicity test (norm 6341). https://www.iso.org/standard/54614.html Vignati, D.A.L., Martin, L.A., Poirier, L., Zalouk-Vergnoux, A., Fouque, C., Clément, B., Hissler, C., Cossu-Leguille, C. (2024). Ecotoxicity of lanthanides to Daphnia magna: insights from elemental behavior and speciation in a standardized test medium. Ver.3 peer-reviewed and recommended by Peer Community In Ecotoxicology and Environmental Chemistry. https://hal.science/LIEC-UL/hal-04302491v3 | Ecotoxicity of lanthanides to *Daphnia magna*: insights from elemental behavior and speciation in a standardized test medium | Davide A.L. Vignati, Loïc Martin, Laurence Poirier, Aurore Zalouk-Vergnoux, Chantal Fouque, Clément Bojic, Christophe Hissler, Carole Cossu-Leguille | <p>Lanthanides (LNs) are a group of 15 elements with steadily increasing economical importance due to their multiple uses in technologies essential for sustainable ecological, digital and energetic transitions. Although knowledge on LN ecotoxicolo... | ![]() | Aquatic ecotoxicology, Chemical speciation | Patrice Couture | 2023-11-23 15:16:50 | View | |
25 Sep 2023
![]() Characterization of the bioaccumulation and toxicity of copper pyrithione, an antifouling compound, on juveniles of rainbow troutCharlotte Bourdon, Jérôme Cachot, Patrice Gonzalez, Patrice Couture https://doi.org/10.1101/2023.01.31.526498Bioaccumulation and impact of copper pyrithione impact in juveniles of rainbow troutRecommended by Claudia CosioOur ability to anticipate and estimate how pollution affects biota is intrumental in the field of ecotoxicology. Impact of chemical pollution by metals, drugs or pesticides was widely studied in different species using acute and chronic scenarios. Since the ban on tributyltin in antifouling paints, other copper (Cu)-based paints are on the market, including a new generation of booster biocides:metal pyrithiones such as Cu pyrithione (CuPT). Pyrithione acts as a Cu ionophore facilitating Cu transport across the membranes. Although some data show their occurrence in aquatic ecosystems and few studies on the toxicity of CuPT in fish are published, major gaps in knowledge remain about their toxicity and toxic pathway. Few studies were previously conducted in animals exposed to CuPT pointing to reprotoxicity, developmental malformation and mortality (Li et al. 2021, Mochida et al., 2011; Mohamat-Yusuff et al., 2018, Shin et al., 2022). However, its toxicokinetic and toxicodynamic remain to be characterized in details. In this context, Bourdon et al. (2023) compared in juveniles of rainbow trout (Oncorhynchus mykiss), the effects of exposure to CuPT and ionic Cu2+ at equivalent Cu2+ molar concentrations. Presented data allow to compare the toxicity threshold, the accumulation of Cu and mechanisms of toxicity of both compounds. Acute and chronic exposures showed a higher bioaccumulation of Cu in the gills, and a higher toxicity of CuPT than that of ionic Cu2+, e.g. mortality , transcription levels of genes related to oxidative stress, detoxification and Cu transport. Intriguingly, the activities of enzymatic biomarkers used as proxy of antioxidant capacity were not significantly altered, although Cu is generally expected to trigger oxidative stress. In conlusion, this study brings new knowledge pointing that the presence of CuPT in the environment could induce toxic effects in non-target species. Moreover, it support the need to study in detail the toxicity of Cu-based paints to adapt regulations concerning their use and release in aquatic environments. Because of its low solubility in water, CuPT is expected to adsorb to suspended matter and food pellets. Future research should study this route of exposure.
References Bourdon, C., Cachot, J., Gonzalez, P., Couture, P., 2023. Characterization of the bioaccumulation and toxicity of copper pyrithione, an antifouling compound, on juveniles of rainbow trout, bioRxiv ver. 3 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://doi.org/10.1101/2023.01.31.526498 Li, X., S. Ru, H. Tian, S. Zhang, Z. Lin, M. Gao and J. Wang, 2021. Combined exposure to environmentally relevant copper and 2,2′-dithiobis-pyridine induces significant reproductive toxicity in male guppy (Poecilia reticulata). Science of the Total Environment 797, https://doi.org/10.1016/j.scitotenv.2021.149131 Mochida, K., Amano, H., Onduka, T., Kakuno, A., Fujii, K., 2011. Toxicity and metabolism of copper pyrithione and its degradation product, 2,2’-dipyridyldisulfide in a marine polychaete. Chemosphere 82, 390–397, https://doi.org/10.1016/j.chemosphere.2010.09.074 Mohamat-Yusuff, F., Sarah-Nabila, Ab.G., Zulkifli, S.Z., Azmai, M.N.A., Ibrahim, W.N.W., Yusof, S., Ismail, A., 2018. Acute toxicity test of copper pyrithione on Javanese medaka and the behavioural stress symptoms. Marine Pollution Bulletin 127, 150–153, https://doi.org/10.1016/j.marpolbul.2017.11.046 Shin, D., Y. Choi, Z. Y. Soon, M. Kim, D. J. Kim and J. H. Jung, 2022. Comparative toxicity study of waterborne two booster biocides (CuPT and ZnPT) on embryonic flounder (Paralichthys olivaceus). Ecotoxicology and Environmental Safety 233, https://doi.org/10.1016/j.ecoenv.2022.113337 | Characterization of the bioaccumulation and toxicity of copper pyrithione, an antifouling compound, on juveniles of rainbow trout | Charlotte Bourdon, Jérôme Cachot, Patrice Gonzalez, Patrice Couture | <p>Since the global ban on tributyltin in antifouling paints in 2008 by the International Maritime Organization, new products have been developed and brought to the market. Among them, copper pyrithione (CuPT) is used, but its mechanisms of toxici... | ![]() | Aquatic ecotoxicology, Bioassays, Biomarkers, Biomonitoring, Biotransformation, Environmental pollution | Claudia Cosio | Elise David, Anne-Sophie Voisin | 2023-02-01 15:23:44 | View |
21 May 2024
![]() Assimilation efficiencies and elimination rates of silver, cadmium and zinc accumulated by trophic pathway in Gammarus fossarumOphélia Gestin, Christelle Lopes, Nicolas Delorme, Laura Garnero, Olivier Geffard and Thomas Lacoue-Labarthe https://doi.org/10.1101/2023.07.14.549054Food type influences dietary metal uptake and elimination in Gammarus fossarumRecommended by Patrice CoutureGiven their narrow associations with human civilization, including urban, agricultural and industrial settings, freshwater systems worldwide are primary recipients of contaminants from anthropogenic origins, threatening biodiversity (Dudgeon 2019). Freshwater invertebrates are typically abundant in these environments. They are easily sampled, and several species can also be raised in the laboratory. Furthermore, they have the propensity to accumulate contaminants from their environments through both aqueous and dietary routes. These traits make them ideally suited as bioindicators of environmental contamination and for the study of the mechanisms of contaminant uptake and effects. Therefore, over the last decades, several studies have investigated the bioaccumulation and toxicity of a wide range of organic and inorganic contaminants. Knowledge of the relative importance of the aqueous and dietary exposure routes is key to understanding the processes involved in contaminant uptake and organismal and ecological consequences. Although the mechanisms of aqueous uptake have received much attention in recent literature, those associated with dietary uptake are far less known. This is the case for species commonly used for biomonitoring environmental contamination such as the amphipod Gammarus fossarum, and for metals of major concern for the Water Framework Directive (WFD) such as Ag, Cd and Zn. To address these knowledge gaps, Gestin et al (2024) investigated the assimilation efficiency (AE) of Ag, Cd and Zn from two contrasting types of food, one plant (alder leaves) and one invertebrate (Chironomus riparius larvae) for gammarids using a pulse-chase-feeding method in a laboratory setting. Food was radiolabeled and fed for a short period to gammarids (3 to 5 hours for alder leaves and 1 hour for chironomid larvae), after which they were left to depurate for 14 days, during which period they were fed with uncontaminated alder leaves. During the depuration period, gammarids were monitored to follow radioactivity using a gamma counter. A nonlinear least squares modelling approach was used to estimate assimilation efficiencies and elimination rates of the metals from each food source. References Dudgeon, D. (2019). Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology 29(19):R960-R967. https://doi.org/10.1016/j.cub.2019.08.002 Gestin, O., Lopes, C., Delorme, N., Garnero, L., Geffard, O., Lacoue-Labarthe, T. (2024). Assimilation efficiencies and elimination rates of silver, cadmium and zinc accumulated by trophic pathway in Gammarus fossarum. bioRxiv, 2023.07.14.549054, ver.4 peer-reviewed and recommended by Peer Community In Ecotoxicology and Environmental Chemistry. https://doi.org/10.1101/2023.07.14.549054 | Assimilation efficiencies and elimination rates of silver, cadmium and zinc accumulated by trophic pathway in *Gammarus fossarum* | Ophélia Gestin, Christelle Lopes, Nicolas Delorme, Laura Garnero, Olivier Geffard and Thomas Lacoue-Labarthe | <p>To improve the assessment of metal toxicity in aquatic organisms, it is important to consider the different uptake pathways (i.e. trophic or aqueous). The bioaccumulation of dissolved metals such as Cd and Zn in gammarids is beginning to be wel... | ![]() | Aquatic ecotoxicology, Bioaccumulation/biomagnification | Patrice Couture | 2023-07-15 10:27:34 | View | |
09 Dec 2022
![]() Soot and charcoal as reservoirs of extracellular DNAStanislav Jelavic, Lisbeth Garbrecht Thygesen, Valerie Magnin, Nathaniel Findling, Sascha Müller, Viktoriia Meklesh, Karina Krarup Sand https://doi.org/10.26434/chemrxiv-2021-9pz8c-v5New insights into eDNA sorption onto environmental carbonaceous materialsRecommended by Pierre LabadieIn recent years, the use of environmental DNA (eDNA) to investigate biodiversity has gained considerable interest (Thomsen and Willerslev, 2015; Mauvisseau et al., 2022). It allows for the indirect detection of species but it requires a sound understanding of eDNA behaviour and persistence in the environment. This is, however, a complex task because eDNA may be found in several states (e.g., dissolved, adsorbed, intracellular or intraorganellar), which display specific decay rates controlled by environmental factors (Harrisson et al., 2019; Mauvisseau et al. 2022). In the environment, dissolved DNA may interact with the surfaces of various sorbents, including mineral and organic particles/colloids. Current knowledge on eDNA sorption suggests that eDNA–sorbent interactions are controlled by electrostatics as well as inner-sphere complex formation (Mauvisseau et al., 2022). In this context, the work undertaken by Jelavic et al. (2022), focused on the adsorption of eDNA by lesser-investigated carbonaceous materials (CMs), namely soot and charcoal, as common non-mineral environmental surfaces. The authors aimed to study the adsorption capacity of soot and charcoal surfaces with respect to eDNA, in relation to solution parameters (i.e., pH, ionic strength, concentration/type of cations), time and eDNA length, under both non‐equilibrium and equilibrium conditions. Using such an approach, Jelavic et al. demonstrated the large adsorption capacities of CMs and the strong binding of DNA to these sorbents. The authors did not provide definitive conclusions on the mechanisms of eDNA sorption onto CMs. However, they provided new elements suggesting that, along with electrostatic interactions, hydrophobic interactions might play an important role in the adsorption of eDNA to CMs such as soot and charcoal. Altogether, the results presented in this paper highlight the relevance of CMs as sources of biodiversity information. In addition, it is likely that those results will also prove useful for the community to improve protocols for eDNA extraction from environmental samples that contain high fractions of CMs, e.g. urban soils. References Harrison JB, Sunday JM, Rogers SM (2019) Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society B: Biological Sciences, 286, 20191409. https://doi.org/10.1098/rspb.2019.1409 Jelavic S, Thygesen LG, Magnin V, Findling N, Müller S, Meklesh V, Sand KK (2022) Soot and charcoal as reservoirs of extracellular DNA. ChemRxiv, ver. 5 peer-reviewed and recommended by Peer Community in Ecotoxicology and Environmental Chemistry. https://doi.org/10.26434/chemrxiv-2021-9pz8c-v5 Mauvisseau Q, Harper LR, Sander M, Hanner RH, Kleyer H, Deiner K (2022) The Multiple States of Environmental DNA and What Is Known about Their Persistence in Aquatic Environments. Environmental Science & Technology, 56, 5322–5333. https://doi.org/10.1021/acs.est.1c07638 Thomsen PF, Willerslev E (2015) Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183, 4–18. https://doi.org/10.1016/j.biocon.2014.11.019 | Soot and charcoal as reservoirs of extracellular DNA | Stanislav Jelavic, Lisbeth Garbrecht Thygesen, Valerie Magnin, Nathaniel Findling, Sascha Müller, Viktoriia Meklesh, Karina Krarup Sand | <p style="text-align: justify;">The vast potential of using sediment adsorbed DNA as a window to past and present biodiversity rely on the ability of solid surfaces to adsorb environmental DNA. However, a comprehensive insight into DNA adsorption ... | ![]() | Analytical Chemistry, Environmental chemistry, Environmental monitoring | Pierre Labadie | Anonymous, Jérôme Duval | 2022-04-13 16:08:36 | View |
FOLLOW US
MANAGING BOARD
Pierre Labadie (Representative)