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Abstract1

We propose in this paper a method to assess the effects of a contami-2

nant on a micro-ecosystem, integrating the population dynamics and the3
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interactions between species. For that, we developed a dynamic model to4

describe the functioning of a microcosm exposed to a contaminant and5

to discriminate direct and indirect effects. Then, we get back from mod-6

elling to experimentation in order to identify which of the collected data7

have really been necessary and sufficient to estimate model parameters in8

order to propose a more efficient experimental design for further investi-9

gations. We illustrated our approach using a 2-L laboratory microcosm10

involving three species (the duckweed Lemna minor, the microalgae Pseu-11

dokirchneriella subcapitata and the daphnids Daphnia magna) exposed to12

cadmium contamination. We modelled the dynamics of the three species13

and their interactions using a mechanistic model based on coupled ordi-14

nary differential equations. The main processes occurring in this three-15

species microcosm were thus formalized, including growth and settling of16

algae, growth of duckweeds, interspecific competition between algae and17

duckweeds, growth, survival and grazing of daphnids, as well as cadmium18

effects. We estimated model parameters by Bayesian inference, using si-19

multaneously all the data issued from multiple laboratory experiments20

specifically conducted for this study. Cadmium concentrations ranged be-21

tween 0 and 50 µg.L-1. For all parameters of our model, we obtained22

biologically realistic values and reasonable uncertainties. The cascade of23

cadmium effects, both direct and indirect, was identified. Critical effect24

concentrations were provided for the life history traits of each species. An25

example of experimental design adapted to this kind a microcosm was also26

proposed. This approach appears promising when studying contaminant27

effects on ecosystem functioning.28
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1 Introduction29

The toxic effects of contaminants are most often studied at the individual level,30

since it is easier to study life history traits of an isolated organism, studying for31

example its survival, development or capacity to reproduce. Moreover, monospe-32

cific bioassays are easy to implement and perform, and observation data at the33

individual level are straightforward to analyse, since they depict the direct ef-34

fects of contaminants. Nevertheless effects can also be measured at other levels35

of biological organisation using various experimental devices that are chosen36

related to the level of interest, by adapting several characteristics such as size,37

duration, number of species, abiotic compartment, etc [Calow, 1993]. Multi-38

species devices, like microcosms and mesocosms, allow to study organisation39

levels from populations to ecosystem, by integrating population dynamics and40

interactions between species [Forbes et al., 1997, Kimball and Levin, 1985, Ra-41

made, 2002]. However, extrapolating toxic effects from one biological level to42

the next based on observation data remains a challenge. In particular, going43

from individual to population levels, or from population to community levels,44

implies taking into account intra- and inter-specific interactions, which are of45

major importance in the functioning of ecosystems, while it is necessary to in-46

tegrate these interactions for a better assessment of the ecotoxicological risk47

[Cairns, 1984, De Laender et al., 2008, Preston, 2002].48

Modelling tools have proven their utility to analyse ecotoxicological data, by49

highlighting the underlying mechanisms leading to observations at each level50

of biological organisation. But modelling appears particularly helpful when ex-51

trapolation of contaminant effects from biological levels reveals necessary. For52

instance, physiologically based toxico-kinetic survival models allow to extrapo-53

3



late the fate of a contaminant at sub-individual level to its effects on individual54

survival [Ashauer et al., 2016], or individual based models (IBM) including con-55

taminant permit to extrapolate effects on the population level from effects on56

the individuals [Hansul et al., 2021, Mintram et al., 2018], or food web models57

permit to transfer effects of contaminants across the whole community [Baudrot58

et al., 2018].59

Ecotoxicology relies on experimental data, while being concerned by the Re-60

placement, Refinement and Reduction of Animals in Research (3Rs) program61

[Kilkenny et al., 2009] and by difficulties linked to collection of field data. Taking62

the most of experimental data and reducing the amount of experiments to per-63

form in general is a key issue the ecotoxicology field faces. Formal optimisation64

of experimental design can be applied to standard tests (namely monospecific65

bioassays): they have been questioned in terms of test duration and measured66

endpoints [Charles et al., 2016] or regarding the tested concentration range67

[Forfait-Dubuc et al., 2012]. Yet, more complex experimental designs, like mi-68

crocosms or mesocosms may resist to formal optimisation particularly because69

of species interactions leading to indirect effects. Some attempts have been70

made in simple cases to deal with standard dose-responses curves [Chèvre and71

Brazzale, 2008, Holland-Letz and Kopp-Schneider, 2015, Keddig et al., 2015,72

Khinkis et al., 2003, Sitter and Torsney, 1995, Wang et al., 2006] but to our73

knowledge, nothing similar exist for multi-species models. Nevertheless, when74

modelling has been integrated to the experimental framework, it can easily be75

used to evaluate a posteriori the relevance of the data, as a pragmatic and76

case-by-case method to analyse the information provided by data and possibly77

improve the experimental design for studies with microcosm experiments with78
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similar species and compounds.79

The aim of our paper is to illustrate (1) how to use modelling to describe the80

functioning of a three-species microcosm exposed to a contaminant and to dis-81

criminate direct effects (related to effects on specific, modelled processes) and82

indirect effects (related to effects resulting from the cascade of processes); (2)83

how to develop critical effect concentrations for key population regulating pro-84

cesses (such as EC50 in stress functions); and (3) how model outcomes can85

inform experimental design in order to identify which of the collected data have86

really been necessary and sufficient to estimate model parameters in order to87

propose a more efficient experimental design for further investigations.88

Different steps have been set up to achieve our objectives, as summarised in89

Figure 1. We performed experiments to collect data on the microcosm species90

populations at different cadmium concentrations. In parallel, we formulated a91

model of the microcosm functioning under a chemical stressor based on cou-92

pled ordinary differential equations (ODE) and effect functions. First, using all93

data we estimated model parameters, in particular those related to effect func-94

tions (Figure 1, black boxes). Using data where species occur in isolation and95

where they occur as a community of species permitted to identify direct and96

indirect effects of cadmium on the population dynamics of the different species.97

We then globally analysed the perturbations of our small community (objective98

1). We also extracted EC50 for the different processes (growth, survival, and99

strength of interspecies interaction) (Figure 1, orange boxes). In order to assess100

the relevance of certain data, we removed those data from the complete dataset101

to build partial datasets. Then, we estimated function parameters with the102

partial datasets. The newly estimated effect functions were then compared to103
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the reference ones obtained with the complete dataset (Figure 1, green boxes).104

This allowed us to evaluate the added values of only considering partial datasets105

instead of the complete original one (objective 2).106

2 Experiments and observed data107

Experimental design Microcosms were identically prepared for all experi-108

ments according to [Lamonica et al., 2016a] (without sediment). Algae, duck-109

weeds and daphnids were cultivated at the laboratory according to internal110

protocols [Clément et al., 2014]. According to the experiment, beakers were111

inoculated with one, two or three species at the start of the experiment (day112

0). When algae were present, 4.107 cells of P. subcapitata were introduced into113

beakers. When daphnids were present, 10 daphnids (Daphnia magna neonates114

aged 24± 12 h) were introduced into beakers. When duckweeds were present, 8115

fronds of duckweeds were introduced into beakers. The algal density in the water116

column was measured every two to three days with a particle counter [Lamon-117

ica et al., 2016a]. The algal density at the bottom of the beakers was measured118

once during the experiment [Lamonica et al., 2016b]. Daphnids neonates were119

removed from the microcosm every two days, meaning that reproduction was120

considered as an independent process in the microcosm functioning [Lamon-121

ica et al., 2016a]. The number of daphnids in each beaker was counted (after122

neonate removal if necessary) and their size measured (from the centre of the123

eye to the caudal base of spine) twice or thrice per week. The duckweed fronds124

were counted every two to three days. The experiments lasted between 13 and125

21 days. The experiments are summarised in SI Table S1.126
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Experiments without cadmium Experiment 1 involved algae and daphnids127

as detailed in [Lamonica et al., 2016a] (referred in that paper as ”Experiment128

without sediment” in section 2.3.2.). Experiment 2 involved algae alone as129

detailed in [Lamonica et al., 2016b] (referred in that paper as ”Experiment 1”130

in section 2.2.1.). Experiment 3 involved algae and duckweeds as detailed in131

[Lamonica et al., 2016b] (referred in that paper as ”Experiment 3” in section132

2.2.2.).133

Experiments with cadmium Experiment 4 involved algae and duckweeds,134

with two conditions in species composition: duckweeds alone, and algae and135

duckweeds together. We tested five different cadmium concentrations (0, 11.1,136

20.2, 35.5 and 51.1 µg/L) in triplicate for each condition. Three additional con-137

trol beakers were inoculated with algae alone. The duration of this experiment138

was 14 days. From this experiment, we obtained different types of data un-139

der contaminant exposure: ”monospecific data, duckweeds”, ”two species data,140

duckweeds” and ”two species data, algae”.141

Experiment 5 involved the three species, with three conditions in species com-142

position: duckweeds alone, algae and duckweeds, and algae, duckweeds and143

daphnids. We tested five different cadmium concentrations in triplicate for each144

condition (0, 2.25, 4.50, 6.88 and 9.09 µg/L). The duration of this experiment145

was 21 days. From this experiment, we obtained the following data under con-146

taminant exposure: ”monospecific data, duckweeds”; ”two species data, duck-147

weeds” and ”two species data, algae”; ”complete microcosm data, duckweeds”,148

”complete microcosm data, algae” and ”complete microcosm data, daphnids”.149

Experiment 6 involved algae alone. We tested five different cadmium concen-150
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trations (0, 26.2, 36.4, 40.8 and 43.6 µg/L) in triplicate. The duration of this151

experiment was 14 days. From this experiment, we obtained ”monospecific data,152

algae”.153

As mentioned in [Lamonica et al., 2016b], we used measured cadmium concen-154

trations in the medium instead of nominal ones. For that purpose, we measured155

dissolved cadmium concentrations as described by Clement et al. [Clément et al.,156

2014] at days 2, 7, 14 (and day 21 for Experiment 5) in each beaker. We then157

calculated the arithmetic mean of all the measurements. In total, for Experi-158

ments 4, 5 and 6, we thus obtained 13 concentrations (0, 2.25, 4.50, 6.88, 9.09,159

11.1, 20.2, 35.5, 51.1, 26.2, 36.4, 40.8 and 43.6 µg/L) denoted by Cj , j ∈ [0, 12]160

hereafter. The concentration in the controls of Experiments 4, 5 and 6 (that is161

with no contaminant) is denoted by C0, corresponding to index j = 0. This is162

also the case in Experiments 1 to 3, that were conducted without contaminant.163

3 Dynamic modelling164

The description of the model follows the Overview, Design concepts and De-165

tails (ODD) protocol originally used for describing individual and agent-based166

models Grimm et al. [2010] but adapted here for a dynamic model based on167

Ordinary Differential Equations (ODE). The ODD protocol consists of seven168

elements. The first three elements provide an overview; the fourth element ex-169

plains general concepts underlying the model’s design and the remaining three170

elements provide further details.171
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3.1 Purpose172

The model developed in this paper describes the dynamics of duckweeds, al-173

gae and daphnids under the microcosm conditions described in ”Experiments174

and observed data” section. In particular, it aims at i) comparing the species175

dynamics both in isolation and together in order to highlight the interactions176

between the three species; and ii) describing the effects of cadmium on the dif-177

ferent processes involved in the microcosm functioning. We first present the178

model of the three species’ dynamics without contaminant, then we show how179

we integrated cadmium effects in the model.180

3.2 Entities, state variables and scales181

We model both duckweed and algal population dynamics but we only model182

two daphnid life history traits (growth and survival) that are involved in the183

interaction between algae and daphnids. The model involves five state variables.184

The two first ones refer to the numbers of algal cells per beaker in the two185

compartments of the microcosm at time t and cadmium concentration Cj : the186

suspended algae in the water column (Compartment 1), denoted by N1(t, Cj),187

and the settled algae at the bottom of the beaker (Compartment 2), denoted188

by N2(t, Cj). The third state variable is the number of duckweed fronds per189

beaker at time t and cadmium concentration Cj , denoted by Nd(t, Cj). The190

two other state variables refer to the daphnids: the number of alive daphnids in191

the microcosm through survival rate at time t and cadmium concentration Cj ,192

denoted by S(t, Cj) and the daphnid size at time t and cadmium concentration193

Cj , denoted by L(t, Cj). The model is run on 21 days, corresponding to the194

duration of the longest experiment.195
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3.3 Process overview and scheduling196

Nine processes are modelled with a continuous time scale, using ODE. Two197

processes are related to intrinsic algal dynamics: settling of suspended algae198

and growth of both suspended and settled algae. One process is related to199

intrinsic duckweed dynamics: duckweed growth. One process concerns the200

algae-duckweed interaction with an interspecific competition. Two processes201

are related to daphnid life history traits: survival and growth. Two processes202

are related to algae-daphnid interaction: ingestion of algae by daphnids and203

location of daphnid for grazing. The last process is related to the effects of204

cadmium on the different parameters. An overall graphical representation of205

the implemented model is given in Figure S1.206

3.4 Design concepts207

3.4.1 Basic principles208

The assumptions we make are based on the experimental design described in209

”Experiments and observed data” section. We assume that algae are uniformly210

distributed in the water column and at the bottom of the beaker at each time211

step and that the settling speed of suspended algae is constant throughout212

the water column. Therefore, the water volume occupied by the suspended213

algae is supposed to decrease at the same speed as algal settling. We assume214

that algae and duckweeds are competing only for nutrients in the medium.215

We also assume that settled algae are too distant from duckweeds to interact216

with them, so that the interspecific competition only involves suspended algae.217

Interspecific competition has no effect on algae, as shown in Lamonica et al.218
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[2016b]. We assume that cadmium affects the growth rates of all species, as219

well as competition intensity parameters and daphnid survival. Cadmium is220

supposed not to affect either the carrying capacities of algae and duckweeds or221

the algal settling rate.222

3.4.2 Emergence223

Algal and duckweed dynamics emerge both from their intrinsic dynamics (growth224

and settling for algae, growth for duckweeds) and from the interspecific com-225

petition between the two species. Algal dynamics also depends on daphnids226

through the quantity of algal cells that are consumed by daphnids. With cad-227

mium, both dynamics emerge from the impact of cadmium on their respective228

growth and on the interaction.229

3.4.3 Sensing230

In order to determine the number of daphnids grazing in each compartment231

over time, we assume that daphnids, as pelagic species, preferentially feed in232

the water column Siehoff et al. [2009]. We also assume that daphnids move233

to the sediment when the ratio of algal density in the water column over the234

bottom of the beaker is below a given threshold Siehoff et al. [2009].235

3.4.4 Interactions236

Intraspecific competition between algal cells and between duckweed colonies237

are taken into account in their respective logistic growth models. Algae and238

duckweeds interact through an interspecific competition process, described with239

a Lotka-Volterra type I interaction model. Algae and daphnids interact through240

a trophic relationship, namely grazing.241
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3.4.5 Stochasticity242

We use stochasticity to describe variability on state variables, which sum up243

both uncertainties and variability sources within the processes. We suppose244

a normal distribution on the decimal logarithm of the number of algal cells245

per beaker in each compartment (in the water column and at the bottom of246

the beaker) Roger and Reynaud [1978] and on the decimal logarithm of the247

number of duckweed fronds. For the number of daphnid survivors we consider248

a conditional binomial distribution Forfait-Dubuc et al. [2012] and a normal249

distribution for the daphnid size.250

3.5 Initialisation251

As algae are inoculated in the water column only, the initial values for the252

number of algal cells per beaker in the water column and at the bottom of the253

beaker are 4×107 and 0, respectively. The initial number of duckweed fronds is254

8. The initial number of daphnids is 10, the initial survival rate is fixed to 1 (as255

all introduced daphnids are alive) and the initial daphnid size is drawn from a256

normal distribution (see hereafter section 4.1). As mentioned in section 2., we257

use measured cadmium concentrations 0, 2.25, 4.50, 6.88, 9.09, 11.1, 20.2, 35.5,258

51.1, 26.2, 36.4, 40.8 and 43.6 µg/L.259

3.6 Input data260

The model does not use input data to represent time-varying environmental261

processes. Laboratory conditions are controlled and supposed to be constant262

over time.263
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3.7 Submodels264

All information on parameters and variables involved in the model are gathered265

together in SI Table S2. Details about parameter estimation are given in ”Sta-266

tistical inference” section.267

The deterministic part of algal dynamics in both compartments and of duck-268

weed dynamics over time t (in days) is described with three coupled ODE. The269

deterministic part of daphnid survival and size are described with two other270

ODE that are presented in their integrated form.271

3.7.1 Algae processes272

We model the algae dynamics using logistic functions to describe algae growth273

in the water column and at the bottom of the beaker. We used an exponential274

decay of algal cells in the water column to describe sedimentation process.275

3.7.2 Duckweed process276

We model the duckweed growth using a logistic function.277

3.7.3 Daphnid processes278

Survival Survival rate at time t and cadmium concentration Cj , S(t, Cj), is279

described by an exponential decay with an instantaneous mortality rate, m0280

(day-1), which is assumed to be time-independent Forfait-Dubuc et al. [2012]:281

S(t, Cj) = exp(−(m0 + ks ×max(0, Cj −NEC))× t) (1)

where kS (µg-1.L.day-1) represents the cadium effect intensity and NEC282

(No Effect Concentration) (µg.L-1) is the concentration from which the con-283
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taminant has an effect on survival. When concentration Cj is below the NEC,284

max(0, Cj −NEC) is equal to 0, thus there is no effect on survival rate which285

only depends on natural mortality m0 and time t. However, when concentra-286

tion Cj is superior to the NEC, max(0, Cj − NEC) is equal to the surplus of287

concentration and mortality due to cadmium is added to the natural mortality.288

We consider a conditional binomial stochastic model for Ds(t, Cj), the num-289

ber of alive daphnids at time t and cadmium concentration Cj in the system290

Forfait-Dubuc et al. [2012]:291

Ds(t, Cj) ∼ B
(

S(t, Cj)

S(t− 1, Cj)
, Ds(t− 1, Cj)

)
(2)

where B stands for the binomial law. For each concentration Cj , the number292

of alive daphnids at time t depends on the number of alive daphnids at time293

t− 1 and on the survival probability between t− 1 and t, represented by S(t)
S(t−1) .294

We make here the implicit assumption that contaminant toxicokinetics is fast295

(which means that internal concentration in the organism is supposed to be equal296

to external concentration in the water Cj) since cadmium have been shown to297

have a rapid toxicokinetic, especially a high capacity of bioaccumulation, at298

least in freshwater organisms [Gestin et al., 2021, Ratier and Charles, 2022].299

Growth Daphnid growth is described using a Von Bertalanffy growth model300

Von Bertalanffy [1938]. In addition, the daphnid size is supposed to follow a301

normal distribution with mean L(t, Cj) and standard deviation σL.302

3.7.4 Interaction processes303

Interspecific competition process We model the interspecific competition304

process between algae and duckweed using a unilateral Lotka-Volterra type I305
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model, with an effect on duckweed dynamics only.306

Ingestion process The ingestion rate of a daphnid, i.e. the number of cells307

per beaker each daphnid consumes per day (denoted as g1(t, Cj) in the water308

column and g2(t, Cj) at the bottom of the beaker) is modelled with a Holling309

type II function of algal density in each compartment (
N1(t,Cj)
V1(0)

and
N2(t,Cj)

V2
),310

for a given daphnid size L(t, Cj):311

g1(t, Cj) =
δ2 × L(t, Cj)

γ × N1(t,Cj)
V1(0)

δ3 +
N1(t,Cj)
V1(0)

(3)

and312

g2(t, Cj) =
δ2 × L(t, Cj)

γ × N2(t,Cj)
V2

δ3 +
N2(t,Cj)

V2

(4)

with δ2 (cell.daphnd-1.day-1.mm-γ) the maximum ingestion rate, δ3 (cell.mL-1)313

the algal density for which the ingestion rate is equal to half the maximum314

ingestion rate and γ (dimensionless) a regression coefficient.315

Grazing location The number of daphnids grazing in the water column at316

time t and cadmium concentration Cj , D1(t, Cj), is modelled with respect to317

the ratio R(t, Cj) of algal density in compartment 1 over compartment 2 and318

the number of alive daphnids per beaker Ds(t, Cj):319

D1(t, Cj) =
D1(t, Cj)R(t, Cj)

δR(t, Cj)
(5)

3.7.5 Cadmium effects320

We suppose that the survival process is affected by cadmium according to Eq.(5).321

We suppose that only growth rates and parameters of competition intensity322
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are affected by cadmium, as already assumed in Lamonica et al. [2016b]. We323

choose a three-parameter log-logistic function to describe the effect of cadmium324

at concentration Cj on each affected parameter p:325

p(Cj) =
p0

1 +
(
Cj
Ep

)bp (6)

where p0 is the value of parameter p in the control, Ep is the cadmium326

concentration at which p(Cj) = p0
2 , which is equivalent to an EC50, and bp is327

the curvature coefficient of the log-logistic function.328

3.7.6 Complete model329

Finally, the deterministic part of the model describing the functioning of the330

whole microcosm is expressed as follows:331 

dN1(t,Cj)
dt =

ra0

1+
(
Cj
Era

)bra ×N1(t, Cj)×
(

1− N1(t,Cj)
K1(0) exp(−s×t)

)
− s×N1(t, Cj)

−Ds(t,Cj)R(t,Cj)
δ+R(t,Cj)

× g1(t, Cj)

dN2(t,Cj)
dt =

ra0

1+
(
Cj
Era

)bra ×N2(t, Cj)×
(

1− N2(t,Cj)
K2

)
+ s×N1(t, Cj)

−(Ds(t, Cj)− Ds(t,Cj)R(t,Cj)
δ+R(t,Cj)

)× g2(t, Cj)

dNd(t,Cj)
dt =

rd0

1+
(
Cj
Erd

)brd ×Nd(t, Cj)×
(

1− Nd(t,Cj)
Kd

)
− β0

1+
(
Cj
Eβ

)bβ ×Nd(t, Cj)×N1(t, Cj)

L(t, Cj) = L∞ − (L∞ − L0)× exp(− k0

1+
(
Cj
Ek

)bk × t)
S(t, Cj) = exp(−(m0 + ks ×max(0, Cj −NEC))× t)

(7)

The same model can be applied when daphnids are absent, by settingDs(t, Cj) =332

0 and thus D1(t, Cj) = 0. In this case, the two last equations must also be re-333

moved. The same model can be applied when duckweeds are absent, by setting334

Nd(t, Cj) = 0 and removing the third equation. The same model can be applied335
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when algae are absent, by setting N1(t, Cj) = 0 and removing the first two336

equations. When the water column is stirred (i.e. when algae are supposed not337

to settle and duckweeds and daphnids are absent), the settling rate s is assumed338

to be zero and the second and two last equations must be removed.339

At each time step, the decimal logarithm of the number of algal cells per beaker340

in the water column follows a normal distribution of mean N1(t, Cj) and stan-341

dard deviation σN1
. The decimal logarithm of the number of algal cells per342

beaker on the sediment follows a normal distribution of mean N2(t, Cj) and343

standard deviation σN2
. The decimal logarithm of the number of duckweed344

fronds per beaker follows a normal distribution of mean Nd(t, Cj) and standard345

deviation σNd .346

4 Statistical inference347

In order to check if our model satisfactorily described the microcosm functioning,348

we used Bayesian inference to fit the model simultaneously to all our experi-349

mental data from the six above mentioned experiments. Estimates obtained for350

all the parameters are called ”reference estimates” hereafter.351

4.1 Parameter prior distributions352

We defined prior distributions summarising all information on each parameter353

available in advance (SI Table S2). Some of the prior distributions described354

the decimal logarithm of the parameter because of an expected large range of355

possible values (for instance, brd , kS , and β0) or extreme orders of magnitude356

(e.g., large or small). Other prior distributions were defined based on previous357

experiments that were conducted using the same experimental device [Billoir358
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et al., 2011, 2012, Delhaye, 2011, Lamonica et al., 2016a] (ra0), or based on359

additional experiments specifically conducted in the laboratory (Era , bra , rd0 ,360

β0). At last, the remaining distributions were based on literature values [Billoir361

et al., 2008, Biron et al., 2012, DeMott, 1982, Egloff and Palmer, 1971] (k0),362

except for parameters on which we had very vague information (Eβ , bβ , brd), so363

that their prior distributions were chosen as flat.364

4.2 Computation365

Monte Carlo Markov Chain (MCMC) computations were performed using the366

JAGS software via the rjags R package [Plummer, 2009, Team, 2013], after the367

model was discretised using the Euler method with a time step equal to 0.1 as368

stated in [Lamonica et al., 2016a]. Three chains were run. A total of 20000369

iterations was performed as a burn-in phase and inference was based on 100000370

additional iterations for each of the three chains. To check the convergence of371

the estimation process, we used the Gelman and Rubin convergence diagnostic372

[Gelman and Rubin, 1992] with a cut-off of 1.01.373

4.3 Posterior Predictive Check374

To check posterior predictions of the model, we simulated new date at all ex-375

perienced time steps and tested concentrations taking into account parameter376

uncertainties and stochasticity of the model [Lamonica et al., 2016a]. 95% of377

the observed data are expected to be contained in the 95% credibility band of378

the predicted data, got from 2.5% and 97.5% percentiles of the predictions.379
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5 Look-back on the experimental design380

We aim at determining which types of data could be sufficient to accurately (in381

terms of mode of the posterior distribution) and precisely (in terms of dispersion382

of the posterior distribution) estimate parameters of stress functions for the dif-383

ferent species (Table 1). Our reference was the posterior distributions obtained384

when estimating parameters from the whole dataset, considering them as the385

”best possible estimates in the present case study in view of the model and386

all available data”. To evaluate the information provided by certain data, we387

built partial datasets by removing these data from the whole dataset. Then, we388

re-estimated the model parameters using these partial datasets and compared389

the newly obtained estimates with the reference ones.390

Four partial datasets (numbered A to D) were used to estimate the stress func-391

tion parameters. They are summarized in Table 2. We evaluated only informa-392

tion provided by data collected under contaminated conditions, removing them393

successively to build the partial datasets. Regarding data without contami-394

nant, including the controls in Experiments 4 to 6, they were kept in all partial395

datasets.396

Dataset A included all data except the ”monospecific data” with contaminant.397

This corresponds to exclude data collected from beakers containing only one398

species. Thus, data from Experiment 6 and data ”duckweeds alone” from Ex-399

periments 4 and 5 were not included in dataset A. Dataset B included all data400

except the ”two species data” with contaminant. This corresponds to exclude401

data collected from beakers with both duckweeds and algae. Thus, duckweed402

and algae data collected from beakers containing both duckweeds and algae403

from Experiments 4 and 5 were not included in dataset B. In dataset C, we404
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only included the ”complete microcosm data”, which corresponds to include405

only data collected from Experiment 5 with the three species. Dataset D was406

used to evaluate the information provided by data collected at concentrations407

lower than Era and Erd (EC50 values) for algae and duckweeds, respectively.408

Thus, dataset D included all data except those related to duckweeds and algae409

exposed to the lowest cadmium concentrations (”monospecific data” and ”two410

species data”) collected from Experiment 5. All in all, we tested the minimum411

necessary dataset in terms of species combinations (one, two, or three species)412

from datasets A, B and C, and of concentration range via dataset D.413

6 Results414

6.1 Model fit and parameter estimates415

Our MCMC algorithm always consistently converged according to Gelman and416

Rubin diagnostics for each simulation. The corresponding 2.5%, 50% and 97.5%417

quantiles of the posteriors for parameters of interest are summarised in Table418

1. To keep results clear enough, we only display fitting results from data of419

Experiment 5 (measured cadmium concentrations of 0, 2.25, 4.50, 6.88 and 9.09420

µg/L) as medians of the credibility band for predicted data on algae dynamics421

(Figure 2) and daphnid survival (Figure 3). On a general point of view, data422

were satisfactorily described by the model, with between 91% and 98% of ob-423

served data encompassed in the 95% credibility band of the predictions for the424

different species.425

Marginal posterior distributions of the estimated parameters are shown in SI426

(Figure S4). We obtained narrow posterior distributions for almost all param-427

20



eters, in particular parameters of interest, with the exception of parameters428

related to algae-daphnids interaction (grazing). The narrowness of posterior429

distributions indicates that sufficient information was available in the data to430

get posterior distributions of model parameters that are more precise than their431

priors. Such a gain of knowledge makes us confident in our fitting process.432

6.2 Algae dynamics and daphnid survival433

In the presence of duckweeds only (Figure 2(a), control), the number of algal434

cells per beaker in the water column increased during the first seven days when435

growth is higher than settling, and then decreased as growth declined while436

settling was continuing. In the presence of daphnids plus duckweeds, the global437

algal dynamics in the control was similar to the one without daphnids; however438

the number of algal cells per beaker was lower, due to daphnid grazing (Figure439

2(b), control). There was additionally no effect of cadmium on the algal dy-440

namics when duckweeds were present (Figure 2(a)). However, with daphnids,441

differences between tested concentrations appeared from the sixth day of exper-442

iment: the higher the cadmium concentration, the higher the number of algal443

cells (Figure 2(b)). This may be due to the decrease in daphnid number (Figure444

3), daphnid survival being highly affected by cadmium, particularly at the two445

highest tested concentrations C3 and C4.446

6.3 Look-back on the experimental design447

To take into account the potential effect of correlations between parameters, we448

compared 95% credibility intervals of the stress functions predicted from the449

joint posterior distributions obtained for each partial dataset (A to D) to the450
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one obtained from the whole dataset (Figure 4). The 95% credibility intervals451

of the predicted stress functions on daphnid growth rate and survival for each452

partial dataset appear superimposed to the 95% credibility intervals of the pre-453

dicted stress functions for all the data. This result was expected since daphnid’s454

survival and size data were included in all datasets, the whole and partial ones.455

When ”monospecific” data were removed (dataset A), the predicted stress func-456

tions were different from the reference ones with larger 95% credibility bands,457

particularly for competition parameter β. When ”two species” data were re-458

moved (dataset B) the predicted stress functions for both algal and duckweed459

growth rates (ra and rd) were very close to the reference ones. On the contrary,460

the predicted stress function for competition parameter β was overestimated,461

and showed more uncertainty. When ”monospecific” and ”two species” data462

were removed (dataset C), we obtained very large 95% credibility intervals for463

predicted stress functions for both growth rates and the competition parameter.464

At last, dataset D (without data related to duckweeds and algae exposed to the465

lowest concentrations C1 to C4) led to very similar predicted stress functions466

for both algal and duckweed growth rates (ra and rd) compared to the refer-467

ence ones, while for competition parameter β the predicted stress function was468

overestimated with a greater uncertainty.469
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7 Discussion470

7.1 Cadmium effect471

7.1.1 On parameters and processes472

For parameters related to cadmium effect on algae and duckweeds, we obtained473

similar estimates to the ones obtained in a previous study involving only these474

two species [Lamonica et al., 2016b]. However, posterior distributions were nar-475

rower in the present study for some of the parameters, e.g. Era , bra , Eβ and bβ ,476

mainly thanks to additional data we considered for fitting.477

Parameters of the stress function on daphnid survival showed narrow poste-478

rior distributions. Parameter NEC was estimated at 4.47 [2.95, 5.75] µg/L479

while other authors estimated either higher NEC values (8.6 µg/L [Nebeker480

et al., 1986]) or lower ones (0.720 [0.0427, 1.78] [Forfait-Dubuc et al., 2012])481

from monospecific studies. Our NEC estimate was high compared to the one482

obtained with data from the same microcosm, but including five species and sed-483

iment, namely 1.8 [1.2, 2.3] µg/L [Billoir et al., 2012]. Nevertheless, the NEC484

estimated by Billoir et al. was only based on survival data, and thus did not in-485

clude data related to the dynamics of the other species. In particular, the algae486

dynamics link to the number of surviving daphnids was ignored. We thus also487

estimated the NEC only using survival data to compare 95% credible interval488

to the one of [Billoir et al., 2012]. We obtained a NEC value of 3.47 [0.030, 5.50]489

µg/L. This credible interval is quite large because the number of alive daphnids490

per beaker was highly variable, but it contains the credible interval obtained by491

[Billoir et al., 2012]. The number of alive daphnids per beaker revealed difficult492

to describe because of the high inter-replicate variability between the tested493
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cadmium concentrations.494

In the literature, the effects of cadmium on daphnid growth may vary a lot495

from one study to another: EC10 = 7.3 µg/L for 17 days in[Knops et al.,496

2001] (monospecific bioassay conditions), NEC = 0.15 µg/L in [Billoir et al.,497

2012] (five-species microcosm conditions) or EC50 = 2.7 µg/L for 21 days in498

[Clément et al., 2014] (five-species microcosm conditions). In the present study,499

such effects are expressed through both parameters bk and Ek (i.e., EC50).500

We obtained a very high but imprecise estimate for Ek (47.9 [18.2, 2042] µg/L)501

indicating that daphnids were less sensitive in our experiment than in the one502

conducted by [Clément et al., 2014]. However, the low values of curvature coeffi-503

cient bk (0.56 [0.21, 1.04] µg/L) indicated that daphnid growth rate was already504

affected at the lowest concentrations, as also mentioned by [Billoir et al., 2012].505

7.1.2 On the functioning of the microcosm506

The microcosm functioning with cadmium or not is summarised in Figure 5.507

Cadmium effects on daphnid processes corresponded to a negative direct effect508

on survival, in particular at concentrations C3 and C4, as well as to a lighter509

negative direct effect on growth (Figure 4). These direct effects of cadmium510

on daphnid processes impact both algae and duckweeds. Indeed they induced511

a decrease in daphnid grazing that led to an increase in algal density with in-512

creasing cadmium concentrations. Such a result was supported by the absence513

of a cadmium effect on algal growth at concentrations below 10 µg/L, that was514

a positive indirect effect of cadmium on algae below 10 µg/L. In addition, there515

was a negative direct effect of cadmium on the competition intensity. This516

latter did not compensate the negative direct effect of cadmium on growth of517
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duckweeds, especially since algal density became higher, leading to a decrease518

in duckweed density.519

Deciphering the cascade of cadmium effects on the three species is finally possi-520

ble thanks to our modelling approach coupled with experiments. Unravelling the521

chemical direct and indirect effects as well as the interactions between species is522

necessary to correctly interpret the global effect of a chemical substance on the523

functioning of a species community. Nevertheless, it is much more challenging524

when the number of species is increasing [Lamonica et al., 2016b]. Hence, the525

model fits of the present study were overall satisfactory although some predicted526

data were overestimated compared to observed ones. In particular, the num-527

ber of algal cells per beaker in the presence of both duckweeds and daphnids528

were overestimated by our model, as well as the number of duckweed fronds per529

beaker with algae and daphnids (SI, Figure S2 (b)).530

7.2 Look-back on the experimental design531

In ecotoxicology, optimising the experimental designs is not a recent concern532

[Albert et al., 1, Andersen et al., 2000, Forfait-Dubuc et al., 2012, Wright and533

Bailer, 2006], but today mainly relates to the increasing use of concentration-534

response or effect models [Chèvre and Brazzale, 2008, Forfait-Dubuc et al., 2012,535

Holland-Letz and Kopp-Schneider, 2015, Keddig et al., 2015, Khinkis et al.,536

2003, Sitter and Torsney, 1995, Wang et al., 2006]. As formal optimisation first537

applied to monospecific bioassays, it mainly focused on the tested concentrations538

(range and number of concentrations) and on the number of tested individuals539

(per tested concentration and in total) [Forfait-Dubuc et al., 2012]. Formal op-540

timisation is less suitable for microcosm experiments because microcosms are541
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more complex devices. Moreover, microcosms are not standardised experimen-542

tal tools since they are usually set up on a case-by-case basis, according to the543

specific objectives of the study [Cairns Jr and Cherry, 1997, Crossland and La544

Point, 1992]. Thanks to our modelling approach, we were able to question the545

relevance of using certain data to estimate the chosen parameters. Hence, using546

dataset B provided stress functions similar to the reference ones based on all547

available data, even though there were changes in individual parameters, which548

needs to be taken into account when aiming at estimating EC50 in particular.549

We also showed that stress function on the interspecific competition parame-550

ter (β) from partial dataset D differed from the reference one, while the stress551

functions on the processes related to growth (for both algae and duckweeds)552

remained unchanged. Such results suggest that two-species data are not fully553

necessary, while a larger range of tested concentrations would be strongly rec-554

ommended to estimate parameters related to effects on interactions between555

species.556

Datasets A and B were chosen in order to test if monospecific, respectively557

two-species, microcosms were necessary to estimate parameters, and dataset C558

was chosen to test if the complete microscosm alone was sufficient to estimate559

parameters. Similarly, dataset D was chosen to test if reducing the number of560

tested concentrations would affect the quality of parameter estimates. Omitting561

the different species combinations, as well as reducing the number of tested con-562

centrations, would save a lot of time and experimental effort, especially since563

adding one concentration to the design implies adding the number of replicates564

times the number of species combination (and not only the number of repli-565

cates). Also, cutting off some of the species combinations or some of the tested566
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concentrations would permit to increase the number of replicates per treatment.567

More replicates may help capture the variability of the system, allowing to bet-568

ter take uncertainties into account. In addition, when using animal species, the569

overall objective is to reduce the number of organisms involved in experiments.570

Even if it remains difficult to know a priori which types of data would be ab-571

solutely necessary to best estimate stress function parameters, the pragmatic572

look-back we performed using modelling may guide further experiments with573

microcosms, for instance for other contaminants effects, dynamics under mod-574

ified abiotic conditions, or even other species interactions. In particular, our575

study suggests that experiments can be specifically selected to gain knowledge576

on a three-species microcosm. In the end, we could make the following rec-577

ommendations for further ecotoxicological studies with a microcosm device: a578

first experiment with the complete microcosm only (i.e., with the three species)579

and a tested concentration range limited by the sensitivity of the most sensitive580

species; then a second experiment with monospecific microcosms only and a581

tested concentration range limited by the sensitivities of the two less sensitive582

species. If needed, additional experiments without contaminant may involve583

different combinations of species depending on their connections to each others.584

More generally, we would suggest that collecting data of monospecific and com-585

plete microcosms with contaminant might be sufficient to assess the contaminant586

effects, as long as in-depth knowledge of the functioning without contaminant587

is available. Nevertheless, there are limits to how transferable those recommen-588

dations are. When using another microcosm with different species or additional589

species, interactions between species still need to be properly investigated with-590

out contaminant first. Some of the species combinations with contaminant may591
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not be discarded according to the direction or type of the interactions between592

those species. When using different contaminant, especially contaminants with593

different mode of action, discarding the lowest concentrations might be an issue.594

For instance, endocrine disrupting contaminants may show a strong non-linear595

effect, including effects at low concentrations; in that case scenario low concen-596

trations should obviously be maintained in the experimental design.597

598

8 Conclusion and perspectives599

We provided EC50 values for the different processes affected by cadmium. Thanks600

to the understanding of the underlying processes that occurred in the micro-601

cosm functioning, we also managed to identify the cascade of cadmium effects602

induced by the interactions between species. In addition, we got back from603

modelling to experiments in order to determine which of the collected data were604

necessary and sufficient to precisely estimate model parameters, leading us to605

suggest a more efficient experimental design. Finally, we (1) highlighted the606

importance of interactions by identifying the effect cascade occurring within a607

small ecosystem under chemical pressure; and (2) showed that alternative use608

of experimental data can help conceiving experimental designs for a microcosm609

study.610

Our method also permitted to assess which data to include when estimating611

parameters of interest in a dynamic ecosystem model from a laboratory based612

microcosm ecotoxicity study. Such an approach could be enhanced to better613

foresee further experiments with microcosms based a similar model. Beyond614
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this, if parameters are simultaneously estimated a whole dataset, this makes615

possible to compare these reference estimates with those obtained with par-616

tial datasets. This gives knowledge on the data dependency in the modelling617

results. Last but not least, such a retrospective and descriptive sensitivity anal-618

ysis puts light in the fact that data quality and design are more beneficial for619

modelling purpose than quantity. Ideally, as the use of models and big data620

in ecology increases [Van Den Brink et al., 2016], modellers and experimenters621

could collaboratively and profitably elaborate model-guided experiments.622

9 Figures623

9.1 Figure 1624

9.2 Figure 2 (a) and (b)625

9.3 Figure 3626

9.4 Figure 4627

9.5 Figure 5628
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Figure 1: Workflow followed in the present study: (1) in black, development

of the model of the microcosm functioning under cadmium pressure, data col-

lection, and estimation of model parameters with the whole dataset, then ex-

traction of stress functions, namely ”reference stress functions”; (2) in orange,

comparison of population dynamics with and without cadmium to analyse the

global perturbation of the community, extraction of EC50 for the different pro-

cesses; (3) in green, build of partial datasets by removing some parts of the

complete dataset, estimation of parameters using those partial datasets, com-

parison of the newly estimated stress functions to the reference ones to assess

how much information was provided by the removed data.

Experimental design & experiments

All Data
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Parameter estimation
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Figure 2: Model fitting for state variables related to algae dynamics: (a) with

duckweeds; (b) with duckweeds and daphnids. Symbols refer to the different

tested cadmium concentrations of Experiment 5. Plain lines stand for the fitted

model with each parameter equal to its median value at each concentration Cj .

The light grey area corresponds to the 95% credible band of the predicted data

in the control.
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Figure 3: Fit plot for the number of alive daphnids per beaker. Symbols refer

to the different tested cadmium concentrations of Experiment 5. Plain lines

stand for the fitted model with each parameter equal to its median value at

each concentration Cj . The light grey area corresponds to the 95% credible

band of the predicted data in the control.
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Figure 4: Comparison of stress functions obtained with complete and partial

datasets. Plain black lines delimit the 95% credible bands for the stress functions

obtained with the partial dataset, while red dotted lines delimit the 95% credible

bands for the stress functions obtained with the complete dataset.
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Figure 5: Global perturbation of the microcosm functioning without cadmium

(above) and with cadmium (10 µg/L, below). Green boxes represent species

population, black arrows represent species processes, blue arrows represent in-

teractions between species, red ligthnings represent cadmium effect on the dif-

ferent processes. Thickness of boxes lines is proportional to population size and

thickness of arrows is proportional to process intensity.
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survival

grazing −

Algae

population growth

settling

competition − Duckweeds

population growth

Daphnids

Algae

Duckweeds

Cadmium, 10µg.L−1
−

−
−

−

1
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10 Tables629

Table 1: Parameters of interest.

SymbolDefinition Unit Prior distribution*

or value

Sources**2.5, 50, 97.5 %

posterior quantiles

ra0 Intrinsic algal growth

rate in the control

day-1 U (0,2) [1] 0.78 0.83 0.87

Era The concentration at

which ra0 is reduced by

50 %

µg.L-1 log10(Era) ∼ N

(1.78,0.1)

[2] 1.54 1.56 1.58

bra Curvature coefficient - log10(bra) ∼ N

(0.24,0.1)

[2] 0.37 0.43 0.49

β0 Competition intensity of

algae on duckweeds in the

control

# of

cells per

beaker-1.day-1

log10(β0) ∼ U (-11,-

9)

[2] -9.53 -9.46 -9.40

Eβ The concentration at

which β0 is reduced by

50 %

µg.L-1 log10(Eβ) ∼ U (-1,4) Vague -0.99 -0.77 -0.15

bβ Curvature coefficient - log10(bβ) ∼ U (-3,3) Vague -1.11 -0.82 -0.62

m0 Daphnid mortality rate in

the control

daphnid.day-1log10(m0) ∼ U (-4,0) Vague -1.89 -1.71 -1.56

kS Slope of survival stress

function

µg-1.L.day-1 log10(kS) ∼ U (-4,4) Vague -1.80 -1.54 -1.30

NEC No Effect Concentration

on daphnid survival

µg.L-1 log10(NEC) ∼ U (-

2,1)

Vague 0.47 0.65 0.76

k0 Daphnid growth rate in

the control

day-1 N (0.11,0.030) [3] 0.138 0.146 0.154
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SymbolDefinition Unit Prior distribution*

or value

Sources**2.5, 50, 97.5 %

posterior quantiles

Ek The concentration at

which k0 is reduced by

50 %

µg.L-1 log10(Ek) ∼ U (-1,4) 1.26 1.68 3.31

bk Curvature coefficient - log10(bk) ∼ U (-3,3) -0.68 -0.25 0.015

rd0 Intrinsic duckweed

growth rate in the

control

day-1 U (0,2) [2] 0.23 0.24 0.25

Erd The concentration at

which rd0 is reduced by

50 %

µg.L-1 log10(Erd) ∼ N

(2.44,0.2)

[2] 1.96 2.30 2.67

brd Curvature coefficient - log10(brd) ∼ U (-3,3) Vague -1.05 -0.91 -0.77

*Prior distribution: N stands for the normal law, U stands for the uniform law.630

**Sources: [1] [Lamonica et al., 2016a], [2] [Lamonica et al., 2016b], [3] [Billoir et al.,631

2008].632
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Table 2: Experimental design and partial datasets.

Cadmium concentrations Monospecific data Two species data Complete microcosm data

C0

Algae Algae, duckweeds Algae, duckweeds, daphnids

Duckweeds Algae, daphnids

C1−4
Algae Algae, duckweeds Algae, duckweeds, daphnids

Duckweeds

C5−8
Algae Algae, duckweeds

Duckweeds

C9−12 Algae

The black dashed, gray dashed, black and gray rectangles refer to the data that633

have been removed from the entire dataset to build partial dataset A, B, C and D,634

respectively.635
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tion des organismes et densité d’échantillonnage. Rev. Ecol. Biol. Sol, 15:219–234,788

1978.789

43



S. Siehoff, M. Hammers-Wirtz, T. Strauss, and H. Ratte. Periphyton as alternative790

food source for the filter-feeding cladoceran daphnia magna. Freshwater Biology,791

54:15–23, 2009.792

R. R. Sitter and B. Torsney. Optimal designs for binary response experiments with793

two design variables. Statistica Sinica, 5:405–419, 1995.794

R. C. Team. R: A Language and Environment for Statistical Computing, 2013.795

P. J. Van Den Brink, C. B. Choung, W. Landis, M. Mayer-Pinto, V. Pettigrove,796

P. Scanes, R. Smith, and J. Stauber. New approaches to the ecological risk assess-797

ment of multiple stressors. Marine and Freshwater Research, 67(4):429–439, 2016.798

doi: 10.1071/MF15111.799

L. Von Bertalanffy. A quantitative theory of organic growth. Hum. Biol., 10:181–213,800

1938.801

Y. Wang, R. H. Myers, E. P. Smith, and K. Ye. D-optimal designs for Poisson regres-802

sion models. Journal of Statistical Planning and Inference, 136(8):2831–2845, 2006.803

ISSN 03783758. doi: 10.1016/j.jspi.2004.10.017.804

S. E. Wright and A. J. Bailer. Optimal Experimental Design for a Nonlinear Response805

in Environmental Toxicology. Biometrics, (3):886, 2006. ISSN 0006341X.806

44


