
 

 

DRomics, a workflow to exploit dose-response 1 

omics data in ecotoxicology  2 

Marie Laure Delignette-Muller*1, Aurélie Siberchicot1, Floriane 3 

Larras1, Elise Billoir2 4 

 5 

1 Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie 6 
Evolutive, 69622 Villeurbanne, France 7 

2 Université de Lorraine, CNRS, LIEC, F-57000 Metz, France 8 

*Corresponding author 9 

Correspondence: marielaure.delignettemuller@vetagro-sup.fr or dromics@univ-lyon1.fr  10 

 11 

ABSTRACT 12 

Omics technologies has opened new possibilities to assess environmental risks and to 13 

understand the mode(s) of action of pollutants. Coupled to dose-response experimental 14 

designs, they allow a non-targeted assessment of organism responses at the molecular level 15 

along an exposure gradient. However, describing the dose-response relationships on such high-16 

throughput data is no easy task. In a first part, we review the software available for this 17 

purpose, and their main features. We set out arguments on some statistical and modeling 18 

choices we have made while developing the R package DRomics and its positioning compared 19 

to others tools. The DRomics main analysis workflow is made available through a web interface, 20 

namely a shiny app named DRomics-shiny. Next, we present the new functionalities recently 21 

implemented. DRomics has been augmented especially to be able to handle varied omics data 22 

considering the nature of the measured signal (e.g. counts of reads in RNAseq) and the way 23 

data were collected (e.g. batch effect, situation with no experimental replicates). Another 24 

important upgrade is the development of tools to ease the biological interpretation of results. 25 

Various functions are proposed to visualize, summarize and compare the responses, for 26 

different biological groups (defined from biological annotation), optionally at different 27 

experimental levels (e.g. measurements at several omics level or in different experimental 28 

conditions). A new shiny app named DRomicsInterpreter-shiny is dedicated to the biological 29 

interpretation of results. The institutional web page https://lbbe.univ-lyon1.fr/fr/dromics 30 

gathers links to all resources related to DRomics, including the two shiny applications. 31 
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Introduction 36 

Dose-response (DR) modeling belongs to the toolkit of ecotoxicologists. The latter are used to this approach 37 

when working on apical endpoints (e.g. reproduction, photosynthesis). The derived sensitivity thresholds, e.g. 38 

Effective Concentrations (ECx), BenchMark Dose (BMD), are at the basis of regulatory risk assessment. 39 

The recent years have seen the emergence of works using DR omics data (e.g. transcriptomic, proteomic, 40 

metabolomic) in ecotoxicology (Zhang et al., 2018). Typical DR designs, with many doses (>6), ensure a good 41 

description of the DR relationship and a robust and precise estimation of a sensitivity threshold (such as the 42 

benchmark dose – BMD) that is useful to fix regulatory thresholds (Ewald et al., 2022). However, such designs 43 

are less commonly used in omics studies, as tools classically used to analyse omics data are dedicated to 44 

differential expression analysis between few conditions (limma, Ritchie et al., 2025, DESeq2, Love et al., 2014, 45 

EdgeR, Robinson et al., 2010).  The analysis of such data typically starts with a pairwise differential analysis to 46 

the control followed by an enrichment procedure to identify GO (Gene Ontology) terms or KEGG (Kyoto 47 

Encyclopedia of Genes and Genomes) biological pathways of differentially expressed items (e.g. contigs, 48 

proteins) (Dubois et al., 2019, Murat El Houdigui et al., 2019, Meier et al., 2020, Zhan et al., 2021). In a second 49 

time, some perform a DR modeling on differentially expressed items to estimate a BMD per item and 50 

summarize the sensitivity of each pathway for example by the median of BMDs of corresponding pathways 51 

(Meier et al., 2020, Zhan et al., 2021).  52 

 53 

Studies implementing DR (multi-)omics approaches sometimes aim at a mechanistic understanding of 54 

adverse effects (Adverse Outcome Pathway perspective - AOP). They could identify potential Modes of Action 55 

of pollutants (MoAs) at the molecular level, that generally need to be validated in a second step using targeted 56 

experiments (Andersen et al. 2018). Among those making use of our R package DRomics (“Dose Response for 57 

Omics”), we can cite the following ones as examples. Larras et al. (2020), from transcriptomics and 58 

metabolomics analyses in Scenedesmus vacuolatus exposed to triclosan, pointed lipid metabolism as the most 59 

sensitive pathway, in accordance with the mode of action known in bacteria. Gust et al. (2021) evaluated the 60 

mode of action for reduced reproduction in Daphnia pulex exposed to MeNQ by identifying particularly 61 

sensitive KEGG pathways at the transcriptome level. Vokuev et al. (2021) using metabolomics analyses in rat 62 

urine confirmed that sarin poisoning starts with inhibition of acetylcholinesterase that triggers a complex 63 

toxicodynamic response. Lips et al. (2022) and Larras et al. (2022) illustrated how community transcriptomics 64 

and metabolomics provide insights into mechanisms of pollution-induced community tolerance of periphyton 65 

exposed to diuron. Song et al. (2023) showed how DR modelling and estimation of points of departure at 66 

several omics and apical levels can be mapped to an AOP network for ionizing radiation in Daphnia magna. 67 

Those applications of DRomics especially motivated us to develop new R functions and a new shiny application 68 

to help the biological interpretation of DR modeling of omics data.     69 

 70 

The purpose of this paper is to present the new version of the DRomics R package and its two companion 71 

interactive web applications, DRomics-shiny and DRomicsInterpreter-shiny. We first review the software 72 

available to tackle a DR analysis of high-throughput omic data and explain how DRomics distinguishes from 73 

other tools. Then, we present the various functionalities we added to DRomics from its first version published 74 

in 2018 and especially explain the way it can be used to make sense of DR (multi-)omics data in environmental 75 

risk assessment. 76 

DRomics original features compared to other tools dedicated to dose-response omics data 77 

Based on literature review in toxicology and ecotoxicology, we identified five tools available for DR analysis 78 

of high-throughput omics data (Table 1). Their workflows consist of successive steps: first, the selection of 79 



 

 

items (e.g. contigs) significantly regulated along the gradient of exposure. Then, for the selected items, DR 80 

relationships are modeled and BMD are derived from these DR models. The BMD-zSD, the most often used 81 

and recommended version of the BMD, is defined as the dose that leads to a response (BMR – benchmark 82 

response) pointing a difference from the response in controls of more than z times (e.g. with z=1, EFSA, 2017) 83 

the residual standard deviation of the DR model.     84 

The first piece of software developed to analyze high dimensional DR data, in particular gene expression 85 

data, was BMDExpress, released in its first version in 2007 (Yang et al., 2007). It was since updated and 86 

augmented in BMDExpress-2 (Philips et al., 2019). FastBMD (Ewald et al., 2021) implements the same methods, 87 

as framed by the US National Toxicology Program (NTP, 2018), with the sake of being faster and friendlier to 88 

end-users than BMDExpress, and through a web-based interface. Again in the context of toxicogenomics, 89 

BBMD (Ji et al., 2022) has the specificity to use model averaging to account for BMD uncertainty related to the 90 

underlying DR model, and BMDx (Serra et al., 2020) allows a comparison of BMD values of a transcriptomics 91 

experiment at different time points or from different experiments. We developed DRomics in 2018 (Larras et 92 

al., 2018) for DR analysis of any omics data (e.g. transcriptomics, metabolomics), including non-sequenced 93 

organisms or communities (meta-omics), biological models commonly used in the field of ecotoxicology. The 94 

main characteristics and functionalities of those five tools are summarized in Table 1.95 



 

 

Table 1 - Main characteristics of the tools available for DR analysis of high-throughput omics data 96 

  
Software BMDExpress 2 DRomics BMDx FastBMD BBMD 

General 

References 
Yang et al., 2007 

Philips et al., 2019 
Larras et al., 2018 Serra et al., 2020 Ewald et al., 2020 Ji et al., 2022 

Main application area Toxicology Ecotoxicology Toxicology Toxicology Toxicology 

Platform 
free standalone application 

that must be locally installed 

R package, Web app. (R shiny) 

free without registration 

Web app. (R shiny) to be 

launched locally (no server - 

source on GitHub) 

Web app. free without 

registration 

Web app. with registration 

(free or premium accounts) 

Open source yes (GitHub) yes (CRAN, GitHub) yes (GitHub) no no 

Programming languages Java, C, Fortran  R R R, JavaServer Faces (JSF) Python, Javascript 

Date of the first version 2007 2019 2019 2021 2022 

Date of last revision (as on 02/02/2023) 

2020, BMDExpress 3 in prep. 

https://github.com/auerbac

hs/BMDExpress-3 

2023 2022 2022 2022 

Dependencies to other statistical R 

packages 
 not mentionned 

limma, DESeq2 (Bioconductor 

packages) 

drc, bmd, alr3, jtools  

(alr3 and bmd no more 

available on CRAN) 

limma, vsn, edgeR, 

DESeq2, genefilter and 

preprocessCore 

(Bioconductor packages) 

 not mentionned 

Import/ 

Visualisation 

of data 

Types of data for which the tool is 

dedicated 

Transcriptomics data (does 

not differentiate microarray 

and RNAseq data) or other 

continuous data 

RNAseq, microarray, 

continuous omics data (e.g. 

metabolomics, proteomics), 

continuous anchoring data 

Transcriptomics data (does 

not differentiate microarray 

and RNAseq data) 

RNAseq, microarray 

RNAseq, microarray,  

continuous anchoring data, 

binary anchoring data 

Preprocessing of transcriptomic data 

(microarray/RNAseq) supported by the 

software 

no yes no yes no 

Proposed plots to check imported data PCA + Density PCA + Boxplot none PCA + Boxplot + Density PCA + Density 

Selection of 

significant 

responses 

Selection of significant responses to the 

dose gradient 
yes yes yes yes yes 

Filter on the fold change for selection optional (by default yes, > 2) No no 
optional (by default yes 

> 1) 

yes mandatory (> 1.5 at 

least) 

Control of the FDR for this selection optional (by default no) yes optional optional (by default no) yes 

Proposed methods for selection 
ANOVA, William’s trend test, 

Oriogen 

ANOVA,  linear or quadratic 

trend test (for selection of 

monotonic and biphasic 

responses)  

ANOVA or trend test 

(monotonic) 
ANOVA 

ANOVA or adaptation of 

William’s trend test and 

Oriogen for selection of 

monotonic responses 
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Dose-

response 

modeling 

Shapes of proposed models 

monotonic, biphasic, 

multiphasic (3rd and 4th 

order polynomials) 

monotonic and biphasic 

monotonic, biphasic, 

multiphasic (3rd order 

polynomials)  

monotonic, biphasic, 

multiphasic (3rd and 4th 

order polynomials) 

monotonic (Linear, Hill, Pow, 

Exp2, Exp3, Exp4, Exp5) 

User selection of models yes No yes yes yes 

Proposed criterion for best fit model 

choice 

AIC and comparison of 

nested models for 

polynomial models 

AICc (default), AIC, BIC AIC AIC Model averaging 

Characterization of the response none 

increasing (up-regulated), 

decreasing (down-

regulated), U-shape, bell-

shape 

none none increasing, decreasing 

Toxicity threshold provided BMD-zSD BMD (-zSD and -xfold) BMD-zSD BMD-zSD BMD (-zSD or -xfold) 

Method for computing confidence 

intervals on the toxicity threshold 

based on the likelihood but 

not precisely described 
bootstrap not found profile likelihood method model averaging 

Biological 

interpretation 

Includes the annotation step yes (6 species) No yes (3 species) yes (14 species) yes (6 species) 

Available organisms for annotation 

H. sapiens, M. musculus, C. 

lupus familiaris, R. 

norvegicus, D. 

melanogaster, D. rerio  

 none 
H. sapiens, M. musculus, R. 

norvegicus 

H. sapiens, M. musculus, R. 

norvegicus, C. elegans, D. 

melanogaster, D. rerio, S. 

cerevisiae, A. thalian, B. 

taurus, G. gallus, C. 

japonica, X laevis, P. 

promelas, O. mykiss,  

+ annotation-free pipeline, 

Seq2Fun Ortholog 

H. sapiens, M. musculus, R. 

norvegicus, , D. 

melanogaster, D. rerio, B. 

taurus 

Annotation available databases GO, reactome  none KEGG, reactome, GO 
KEGG, GO (BP, MF, CC), 

reactome 

GeneID, GO, reactome, 

KEGG 

Functions to compare the responses at 

different experimental levels (multi-

omics, diff. conditions, …) 

not found yes 
yes (multiple time points, 

multiple experiments) 
not found  not found 
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Figure 1 - Diagram of the DRomics functionalities and of the perimeter of associated tools. Bold font indicates new functions added to the DRomics R package since its first version.100 



 

 

DRomics is the only tool which is composed of both an R package and a free web application (see Table 101 

1). We chose to develop it in the R language among others i) to facilitate the interoperability with the 102 

Bioconductor packages that implement state-of-the-art bioinformatics methods and ii) to add a shiny 103 

application (interactive web app. straight from R) that can be launched both from the package and from a 104 

server freely accessible without registration. The companion DRomics-shiny application was thought for 105 

users who do not want to work in the R environment, but also to help new users to take the package in 106 

hand. For that purpose, the R code of the whole performed analysis is provided in the last page of the shiny 107 

application. While developing DRomics, we were cautious to limit as much as possible the dependencies 108 

to other statistical tools and to only depend on well-maintained R packages. Notice that the installation of 109 

BMDx is currently impossible because of dependencies to non-maintained R packages. 110 

DRomics was at the root designed to be able to analyze data from typical DR design, favoring the 111 

number of doses over the number of replicates per dose, or even for datasets with no experimental 112 

replicates. This situation of DR approach with no replicates is met in some field studies (one dose per 113 

sample) and in some screening studies as illustrated in Rollin et al. (2023). This is the reason why, for the 114 

selection of significantly responsive items, we did not use classical methods based on comparison of means 115 

at different doses, which cannot be applied without replicates, such as one-way ANOVA, William’s trend 116 

test (Williams, 1971) or the ORIOGEN method (Peddada et al., 2003).  Instead we implemented methods 117 

based on the fit of a linear or quadratic model to the data (as coarse approximation of the observed trend) 118 

using the ranks of observed doses as an independent variable (for a better robustness to the repartition of 119 

the tested/observed doses that is sometimes more regular on a log scale). Those two original methods 120 

proposed in DRomics (in addition to the classical ANOVA method) were inspired by the trend tests 121 

proposed by Tukey et al. (1985) and do not require replicates. They were implemented using robust 122 

empirical Bayesian functions provided by DESeq2 (for RNAseq data, Love et al., 2014) or by limma (for other 123 

omic data, Ritchie et al., 2015). To control the false discovery rate (FDR), DRomics implements a mandatory 124 

use of the Benjamini-Hochberg correction/adjustment. Last, we decided not to apply a fold-change filter, 125 

in order to keep weak signals if they are significant, and because fold change is difficult to define for data 126 

with no replicate. DRomics proposes as a default selection method the quadratic trend test which can 127 

detect both monotonic and biphasic responses, and is far more efficient than the classical ANOVA-type test 128 

(Larras et al., 2018) when the number of replicates is low.  129 

For the DR modeling of selected items, the tools developed in the field of toxicology (Table 1) use only 130 

monotonic models (case of BBMD) or the NTP models (NTP 2018, case of BMDExpress, FastBMD and 131 

BMDx). Among the NTP models, only polynomial models can describe non-monotonic responses that are 132 

commonly occurring in omics dose-response data (Smetanova et al., 2015, Larras et al., 2018). Polynomial 133 

models of degree 3 and 4 that are proposed by all the tools using the NTP models (Table 1) are no longer 134 

recommended by the NTP as long as they cannot be constrained to change direction only once (NTP 2018). 135 

So biphasic responses can only be described by a parabole using NTP models, which does not offer a great 136 

flexibility. In the field of ecotoxicology, more flexible biphasic models were used to model biphasic DR data 137 

based on the Gaussian model (Gundel et al., 2012; Smetanova et al., 2015). As one of our main objectives, 138 

while developing DRomics, was to be able to select, model and characterize all types of monotonic and 139 

biphasic responses, we defined our own model family, especially including original flexible biphasic models, 140 

the Gauss-probit and logGauss-probit models (for a complete description see the package vignette 141 

https://cran.r-project.org/web/packages/DRomics/vignettes/DRomics_vignette.html#models or Larras et 142 

al., 2018). BMDExpress and DRomics results were compared in the case study of a microarray dataset, as 143 

reported in the supporting information of Larras et al. (2018). DRomics models were shown to give a better 144 

description of data (smaller AIC values) and more repeatable and conservative BMD estimations for 145 

biphasic responses. Unlike the other tools (Table 1), DRomics does not only provide a BMD estimation, but 146 

also a characterization of the DR response in four classes (increasing, decreasing, U-shape, bell-shape) 147 

https://cran.r-project.org/web/packages/DRomics/vignettes/DRomics_vignette.html#models


 

 

which we thought may be of great interest in an AOP perspective, when the DR analysis not only aims at 148 

defining BMD values but also at making sense of DR (multi-)omics data in environmental risk assessment. 149 

New features in the DRomics DR modeling workflow 150 

Figure 1 maps the DRomics workflow and the functionalities offered to explore the results. First 151 

developed for microarray data, DRomics is now able to handle RNAseq data, metabolomic or other 152 

continuous omic data (e.g. proteomics data) or even continuous non omic data (e.g. growth data) that 153 

could be used for phenotypical anchoring (respectively imported using RNAseqdata(), 154 

continuousomicdata() and continuousanchoringdata() functions). The same modeling workflow, choosing 155 

the best fit models among our complete family of models (as described previously), was declined for each 156 

type of data (e.g. intensities, counts) to ensure the comparability of results (e.g. transcriptomics vs. 157 

metabolomics, transcriptomics vs. anchoring). Writing in the R language ensures the interoperability with 158 

functions of the Bioconductor packages. Thus, functions of the DESeq2 and limma packages are internally 159 

called within the package to normalize and/or transform omic data and to implement the trend tests for 160 

selecting significantly responsive items. The call to additional R functions can be added for example to 161 

correct omics data for a potential batch effect (see an example using ComBat-seq in the package vignette: 162 

https://cran.r-project.org/web/packages/DRomics/vignettes/DRomics_vignette.html#batcheffect).   163 

Various functions were also added to the package (highlighted in bold type in Figure 1) to respond to 164 

user requests. Among them we can cite PCAdataplot() for a visualization of data after the importation step 165 

and detection of potential outlier samples or batch effect, targetplot() to visualize the response of targeted 166 

items whatever they are selected or not in the DRomics workflow, bmdboot() and bmdplot() to compute 167 

and visualize confidence intervals on BMD values using bootstrap.  168 

Moreover, we performed modifications in the modeling workflow to ensure a better robustness of 169 

results on data with a low number of doses. For example, we changed the default information criterion 170 

used for best model selection from the AIC to the AICc, as recommended by Burnham and Anderson (2004), 171 

and  limited the set of models for weak designs with few doses (4 or 5). Despite this care one should favor 172 

optimal dose-response designs with more doses (at least 6-7, and never less than 4) and less (or no) 173 

replicates as recommended by statisticians in toxicology (Moore and Caux, 1997; Ritz, 2010; Larras et al., 174 

2018; Ewald et al., 2022).  175 

New functions and the new shiny application to help biological interpretation 176 

In toxicology, while working on sequenced and well-annotated organisms, items (e.g. genes) can be 177 

functionally annotated prior to DR analysis. BMDExpress integrates this annotation step for 6 model species 178 

on the basis of GO or reactome databases, and FastBMD for 14 model species on the basis of GeneID, GO, 179 

Reactome or KEGG databases (see Table 1). Such an annotation of all the items whatever they respond or 180 

not to the dose gradient exposition, enables the classical enrichment analysis (Wu et al., 2021).  This 181 

analysis consists in highlighting gene sets/pathways which are the most overrepresented among the 182 

responding ones. 183 

In ecotoxicology, one often works on non-model organisms or even on samples from environmental 184 

communities (freshwater biofilm for example – Creusot et al., 2021; Larras et al. 2022, Lips et al., 2022). 185 

This implies the need for the user to retrieve and manage its own annotation, which is a challenging task, 186 

especially for RNAseq experiments for which the number of measured contigs may be huge (several 187 

millions of contigs). We thus considered that this annotation step could be done after the 188 

selection/modeling workflow, to reduce the number of items to annotate, and so the difficulty of this task.  189 

Due to the great diversity of annotation pipelines that can be developed for such non-model organisms, 190 

https://cran.r-project.org/web/packages/DRomics/vignettes/DRomics_vignette.html#batcheffect


 

 

we did not include an annotation step in DRomics. However, and to support the interpretation of the 191 

workflow results in view of a biological annotation provided by the user, we recently developed new 192 

functions and a second shiny application (named DRomicsInterpreter-shiny) (Figure 1).  193 

After augmenting the DRomics output with information about the functional role of items, the graphical 194 

representations offered by DRomics give a new insight into the results. Further, provided a common 195 

annotation system is used at different biological scales under study, DRomics can be used to compare the 196 

response at various levels. Figures 2 and 3 give some illustrations on an example with two molecular levels 197 

from Larras et al. (2020): transcriptomics and metabolomics responses of Scenedesmus vacuolatus to 198 

triclosan exposure. Various functions are proposed to visualize/summarize/compare the responses, for the 199 

different biological groups (defined from biological annotation), optionally at the different experimental 200 

levels. 201 

• the trends (increasing, decreasing, U-shape or bell-shape) of the DR curves (using the 202 

trendplot() function, see a one-level example on Figure 1),  203 

• the group/pathway-level sensitivity calculated as a quantile of BMD values of the group (using 204 

the sensitivityplot() function, see an one-level example on Figure 1 and a multi-level example 205 

on Figure 2),  206 

• for selected groups/pathways, all the BMD values with their confidence intervals (using the 207 

bmdplot() function, see a multilevel-level example on Figure 1, right part) 208 

• for selected groups/pathways, all the BMD values with the corresponding DR curve signal 209 

coded as a color gradient (using the bmdplotwithgradient() function, see a multi-level example 210 

on Figure 3, left part). 211 

• for selected groups/pathways, all the DR curves represented as curves (using the curvesplot() 212 

function, see a multi-level example on Figure 3, right part), 213 

Those functions can also be used to compare the response at one molecular level but measured under 214 

different experimental conditions (different time points, different pre-exposure scenarios, in vitro/in vivo, 215 

etc.). The selectgroups() function was also developed to help the user to focus its interpretation on the 216 

most represented and/or the most sensitive biological groups (see an example of use in the package 217 

vignette: https://cran.r-218 

project.org/web/packages/DRomics/vignettes/DRomics_vignette.html#selectgroups). 219 

 220 
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 221 

Figure 2 - Illustration of the use of the function sensitivityplot() here to summarize the sensitivity of the responding 222 
KEGG pathways at two molecular levels using transcriptomic (contigs) and metabolomic (metabolites) data published in 223 

Larras et al. (2020) on Scenedesmus vacuolatus exposed to triclosan. 224 

 225 

 226 

Figure 3 - Summary of the dose response (DR) curves of all contigs and metabolites corresponding to two specific 227 
KEGG pathways: «membrane transport» and «lipid metabolism»  (from data published in Larras et al. (2020) on 228 

Scenedesmus vacuolatus exposed to triclosan) on the left using the bmdplotwithgradient() function and on the right using 229 
the curvesplot() fuction. 230 

Perspectives 231 

In the report of the National Toxicology Program (NTP, 2018) model averaging is mentioned as an 232 

interesting feature to make the BMD estimate less dependent of the choice of the best DR model. BBMD 233 

(Ji et al., 2022) and the next version of BMDExpress in preparation (BMDExpress-3 – 234 



 

 

https://github.com/auerbachs/BMDExpress-3/) include a Bayesian model averaging procedure. However, 235 

we do not plan to implement model averaging in DRomics because the BMD estimation is not our only 236 

purpose. We also want to characterize each response by its trend, which is itself dependent of the model 237 

choice and not averageable. Instead, we plan to add an alternative to our current bootstrap procedure, 238 

enabling the fit of a different model at each bootstrap iteration, to be able to pass the uncertainty due to 239 

the model choice both on the BMD uncertainty and on the trend uncertainty. 240 

Concerning the modeling workflow, so far, we added specific functionalities to analyse continuous 241 

anchoring data, essentially to prevent comparisons of BMD values at different biological scales but with 242 

BMD obtained from different analysis workflows, which could induce a bias. As anchoring data may be non-243 

continuous, such as dichotomous survival data, or reproduction data reported as number of offspring per 244 

individual-day (Delignette-Muller et al., 2014), we plan new developments in DRomics to be able to analyse 245 

those data properly taking into account their nature.  246 

Concerning our recent development of functions to help the biological interpretation of DRomics 247 

results, we plan to enlarge the range of the methods proposed, by imaging new plots and summaries to 248 

explore and characterize the responses and their diversity within a biological group/pathway. 249 

Conclusion 250 

The development of DRomics has been driven by the demands of ecotoxicologists to help make full 251 

sense of their dose-response (multi-)omics studies. Hence, DRomics was augmented to provide a common 252 

workflow to handle (meta-)transcriptomics, proteomics, metabolomics and/or anchoring data. This creates 253 

the foundations for a proper comparison of responses at different omics levels (and anchoring endpoints) 254 

and a mechanistic understanding in an AOP perspective. Along with functional annotations, DRomics 255 

outputs (response trends, BMD, etc.) can now be processed using a series of graphical functions thought 256 

to help their biological interpretation at the metabolic pathway level. The comparison is made easy (i) of 257 

different measurements, for instance transcripto- and metabolomics, (ii) of different biological materials, 258 

for instance communities with/without pre-exposure history, or (iii) of experimental settings, for instance 259 

successive timepoints or different temperatures. Moreover, two special cases have been addressed: 260 

experiments with a batch effect and designs with no replicates. DRomics future direction and evolutions 261 

depend on upcoming challenges and needs brought by (eco)toxicologists. 262 
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