Submit a preprint

104

Characterization of the bioaccumulation and toxicity of copper pyrithione, an antifouling compound, on juveniles of rainbow troutuse asterix (*) to get italics
Charlotte Bourdon, Jérôme Cachot, Patrice Gonzalez, Patrice CouturePlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
2023
<p>Since the global ban on tributyltin in antifouling paints in 2008 by the International Maritime Organization, new products have been developed and brought to the market. Among them, copper pyrithione (CuPT) is used, but its mechanisms of toxicity remain little known. This project aimed to identify and measure the impacts of aqueous exposure to CuPT, an organic compound, and compare it to ionic Cu2+ added in the form of its inorganic salt CuSO4, in equivalent Cu2+ molar concentrations, on rainbow trout (Oncorhynchus mykiss) juveniles under controlled laboratory conditions. A 24-hour acute exposure was performed with nominal concentrations of 50 and 100 µg/L Cu from either CuSO4 or CuPT (labelled CuSO4_50, CuSO4_100, CuPT_50 and CuPT_100, respectively). The CuPT_100 condition induced 85 % mortality in 15 hours and the CuPT_50 condition induced 5 % mortality in the same period. A chronic exposure was then performed with nominal concentrations of 1 and 10 µg/L Cu from CuPT and 10 µg/L Cu2+ from CuSO4 (labelled CuSO4_1, CuSO4_10, CuPT_1 and CuPT_10, respectively). Measured aqueous concentrations of Cu2+ were slightly higher than nominal concentrations for the lower concentrations, but lower for the CuPT_10 condition. The 8- and 16-day toxicokinetics showed a greater accumulation of copper in the gills of fish exposed to CuPT compared to fish exposed to Cu2+ from CuSO4. The CuPT_10 condition induced 35 and 38 % mortality after 8 and 16 days of exposure, while no mortality was observed in the CuSO4_10 condition. The growth of juveniles was not impacted during the 16 days of exposure for any condition. The activity of antioxidant enzymes (CAT, SOD, GPx) did not respond to exposure to either contaminant. The expression of genes involved in the antioxidant response (sod1, sod2, gpx), detoxification (cyp1a, mt1x, mt2x), Cu transport (ctr1, ctr2, slc11a2), energy metabolism (AcoAc, cox, 12S) and cell cycle regulation (bax) strongly decreased at Day 8 in the gills and at Day 16 in the liver of CuPT-exposed fish in comparison to controls at the same time point. This study clearly showed that the toxicity of Cu in the form of CuPT was much higher than that of ionic Cu from CuSO4 and provides new information on the compound that will be useful to develop regulations concerning its use and release in the aquatic environment.</p>
https://doi.org/10.5683/SP3/OQYR9KYou should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
You should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
Copper pyrithione; antifouling; copper sulphate; rainbow trout juveniles; lethal toxicity; sub-lethal toxicity; oxidative stress; gene expression
NonePlease indicate the methods that may require specialised expertise during the peer review process (use a comma to separate various required expertises).
Aquatic ecotoxicology, Bioassays, Biomarkers, Biomonitoring, Biotransformation, Environmental pollution
e.g. John Doe john@doe.com
No need for them to be recommenders of PCI Ecotox Env Chem. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe john@doe.com
2023-02-01 15:23:44
Claudia Cosio
Elise David, Anne-Sophie Voisin